
Oikonomos-II: A Reinforcement-Learning,
Resource-Recommendation System for Cloud HPC

J.L.F. Betting1, C.I. De Zeeuw1,2, and C. Strydis1,3

1Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
2Netherlands Institute for Neuroscience, Amsterdam, The Netherlands

3Quantum and Computer Engineering Department, Delft University of Technology, Delft, The Netherlands

Abstract—The cloud has become a powerful and useful en-
vironment for the deployment of High-Performance Computing
(HPC) applications, but the large number of available instance
types poses a challenge in selecting the optimal platform. Users
often do not have the time or knowledge necessary to make
an optimal choice. Recommender systems have been developed
for this purpose but current state-of-the-art systems either
require large amounts of training data, or require running
the application multiple times; this is costly. In this work, we
propose Oikonomos-II, a resource-recommendation system based
on reinforcement learning for HPC applications in the cloud.
Oikonomos-II models the relationship between different input
parameters, instance types, and execution times. The system
does not require any preexisting training data or repeated job
executions, as it gathers its own training data opportunistically
using user-submitted jobs, employing a variant of the Neural-
LinUCB algorithm. When deployed on a mix of HPC appli-
cations, Oikonomos-II quickly converged towards an optimal
policy. The system eliminates the need for preexisting training
data or auxiliary runs, providing an economical, general-purpose,
resource-recommendation system for cloud HPC.

Index Terms—High-Performance Computing, resource recom-
mendation, cloud computing, prediction, middleware

I. INTRODUCTION

High-Performance Computing (HPC) refers to the use of
high computational power to solve complex calculations at
high speed. Examples of HPC applications include brain sim-
ulations, weather and climate modeling, and genome sequenc-
ing. Traditionally, such computations take place on computing
clusters and supercomputers, where HPC jobs are executed on
a statically defined hardware allocation after being placed in a
queue. However, modern cloud environments such as Amazon
EC2 and Microsoft Azure offer a wide range of computing
resources on demand, often without waiting times, and on a
pay-per-hour basis. This makes them an attractive alternative
for HPC calculations.

At the time of writing, Amazon EC2 offers 637 different
instance types. The instance types are categorized into families
and the available hardware and costs per hour are available on
Amazon’s website. Nevertheless, it remains challenging for
users to make an optimal choice for their application. Recog-
nizing this problem, Amazon offers instance type recommen-
dation, which recommends an instance type to a user based on

This paper is supported by the European Union’s Horizon Europe research
and innovation programme under projects SEPTON (Gr. Agr. No. 101094901)
and SECURED (Gr. Agr. No. 101095717) and by the Dutch Research
Council’s Gravitation programme under project DBI2 (No. 024.005.022).

historical use over a 14-day period [1]. However, application
execution time is affected by input size and parameters, in
combination with the hardware characteristics, in a typically
hard-to-predict way. This means that the optimal instance type
can be different, even for the same application. Smaragdos et
al. [2] showed that for a simulation model of the human brain,
a CPU version, a GPU-optimized version, and a FPGA version
of the application can all be optimal choices, depending on
the input parameters such as size of the neural network and
connectivity.

We present Oikonomos-II, a reinforcement-learning
resource-recommendation system for cloud HPC.
Oikonomos-II approaches cloud-resource recommendation as
a contextual multi-armed bandit problem. It uses incoming
jobs from researchers to both explore different cloud instance
type options, while also exploiting the knowledge it gains in
the process. As opposed to earlier work, which was either
search-based or prediction-based, Oikonomos-II combines
the best elements of both approaches, and eliminates their
main weaknesses. It can therefore be seen as the first hybrid
system for this purpose. This work is a novel approach over
our previous work, Oikonomos [3], which used an MLP, but
was still purely prediction-based.

The contributions of this work are as follows:

• A novel, reinforcement-learning instance recommender
for HPC applications in heterogeneous cloud environ-
ments. By using a deep contextual bandit algorithm, it
overcomes several limitations of earlier approaches.

• An improvement of the Neural-LinUCB algorithm by
Xu et al. [4]: applying the principle of soft update
makes it possible to use much deeper artificial neural
networks, and thus the representation of much more
complex context-reward relationships.

• A performance analysis of Oikonomos-II on four di-
verse HPC applications, showing the robustness of its
reinforcement-learning approach and its potential for gen-
eral (re)use.

The paper is organized as follows: in Section II, we give an
extensive overview of related works, addressing the strengths
and weaknesses of the various publications. In Section III, we
describe our system and the underlying algorithms in detail. In
Section IV, the four applications that we used for evaluation
are described as well as the relevant implementation-specific

details. In Section V, the performance of Oikonomos-II is
evaluated on four existing HPC applications. We show that
Oikonomos-II explores the available options effectively and
exploits the knowledge it gains, successfully selecting the best
instance type for incoming jobs in the vast majority of cases,
for all applications. In Section VI, we present a discussion of
our findings as well as potential improvements. Section VII
concludes the work.

II. RELATED WORK

Work in the field of cloud-HPC resource recommendation
generally falls in one of two categories: searched-based al-
gorithms and prediction-based algorithms. Search-based algo-
rithms evaluate different hardware combinations in succession
to find the optimal choice. These algorithms do not rely on
earlier data but usually need to run a job multiple times to find
an optimal instance type; this leads to extra costs. Prediction-
based algorithms use offline evaluation of data to predict
performance and can immediately suggest an optimal instance
type. This removes the need to actively search, but these
algorithms require either prior knowledge about the behavior
of the application in the form of a model or historical data. A
summary of related work can be found in Table I.

Venkataraman et al. [5] proposed Ernest, a prediction-based
framework that works with a non-negative least-squares solver,
using historic data about the size of the input data, the number
of virtual machines used and the execution time to fit four
parameter values to a formula. This formula is then used
to predict execution times, and can be extended to include
more parameter values. However, Ernest is less suitable if
the application behavior is unknown. It is also unsuitable for
heterogeneous hardware configurations, since it only takes the
number of machines into account.

Samreen et al. [6] presented Daleel, a prediction-based
framework to support decision making in Infrastructure-as-
a-Service (IaaS) environments, such as clouds. Daleel uses
a multivariate polynomial model to predict execution times,
which is fit to the training data through different regression
methods. In this respect, Daleel is similar to Ernest’s formula-
fitting approach. The amount of vCPUs, RAM, and the day
of the week are used as input parameters. Even though Daleel
achieved low Mean Square Error, like Ernest, it is less suitable
for heterogeneous-hardware configurations or complex rela-
tionships between input parameters and execution time.

Yadwadkar et al. [7] proposed PARIS, another a prediction-
based approach, for selecting the best Virtual Machine (VM)
among multiple clouds. A central innovation of PARIS is the
decoupling of instance performance characterization from the
workload-specific resource requirements. It does this by pro-
filing the instance types using a set of benchmark workloads
– this has to be done only once for each instance type. It
then lets the user choose and run a representative workload
to analyse the resource usage patterns and create a fingerprint
of the application. It uses this fingerprint to recommend an
instance type based on the user’s needs. The decoupling of
application characteristics from instance-type characteristics is

important. However, PARIS burdens the user with choosing a
representative workload, and does not take the influence of
application parameter values on resource usage patterns into
account.

Alipourfard et al. [8] presented CherryPick, a search-based
approach that uses Bayesian optimization to build a perfor-
mance model for applications. A central insight of CherryPick
is that a recommendation system does not need to predict the
execution time as accurately as possible; it just needs to be
good enough to recommend an optimal cloud configuration.
The user is asked to give the objective (e.g. minimizing
costs or execution time) and constraints (budget, maximum
execution time), as well as a workload representative of the
application. CherryPick then finds a list of candidates for
the optimal hardware configuration in multiple clouds, and
finds an optimal cloud configuration in an iterative manner.
The authors compared CherryPick to Ernest, and found that
CherryPick performed similarly when it comes to running
costs, but with lower search time and cost. However, it still
needs to run a workload several times, and like PARIS, burdens
the user with providing representative workloads.

Hsu et al. published three search-based approaches;
Scout [9], Arrow [10], and Micky [11]. Scout is a pair-wise-
comparison approach that uses past performance information
to search efficiently. A key insight from Scout is that any
search-based algorithm has a trade-off between exploration
and exploitation. Historical data can be used to optimize the
exploration process in order to exploit more. Arrow, like Cher-
ryPick, uses Bayesian optimization, but augments it with low-
level metrics in order to reduce search costs. The authors found
that including this information led to enhanced performance
compared to CherryPick’s original Bayesian approach. Build-
ing on the insights from Scout and Arrow, the authors propose
Micky, which casts the problem of finding the best VM as a
multi-armed bandit problem and uses the Upper Confidence
Bound (UCB) algorithm to optimize rewards. Micky optimizes
for a batch of workloads, rather than a single workload, and
aims to find a cloud configuration that is near-optimal for the
majority of workloads. The authors suggest combining Micky
with Arrow or Scout to find the best cloud configuration for
individual workloads. Even though all of these approaches
address some of the problems of search-based algorithms, all
of them require running a workload multiple times to find the
best configuration, which implies additional costs.

Recently, more prediction-based systems were published.
Samreen et al. presented Tamakkon [12]. A key insight from
Tamakkon is that historical performance data can be used for
resource recommendation of new applications or VM types, if
we can determine their similarity. Tamakkon does this using a
Kolmogorov-Smirnov test. Based on the degree of similarity,
Tamakkon adapts a machine-learning model to a specific task
by using profiling data from similar applications. This makes
the algorithm useful for different applications and hardware
configurations. The systems does require the production of
auxiliary data in the cloud, which entails additional costs.
Also, Tamakkon simply labels workloads as ‘similar’ or ‘partly

TA
B

L
E

I
R

E
L

A
T

E
D

W
O

R
K

IN
T

H
E

FI
E

L
D

O
F

C
L

O
U

D
IN

S
TA

N
C

E
T

Y
P

E
S

E
L

E
C

T
IO

N
[3

]

Pu
bl

ic
at

io
n

N
am

e
A

pp
ro

ac
h

In
pu

t
M

ec
ha

ni
sm

L
im

ita
tio

n
vs

th
is

w
or

k

V
en

ka
ta

ra
m

an
et

al
.(

20
16

)
E

rn
es

t
Pr

ed
ic

tio
n-

ba
se

d
N

um
be

r
of

m
ac

hi
ne

s
(C

PU
co

re
s)

N
on

-N
eg

at
iv

e
L

ea
st

-S
qu

ar
es

fit
tin

g
R

eq
ui

re
s

pr
ee

xi
st

in
g

kn
ow

le
dg

e
ab

ou
t

ap
pl

ic
at

io
n

be
ha

vi
ou

r
Sa

m
re

en
et

al
.(

20
16

)
D

al
ee

l
Pr

ed
ic

tio
n-

ba
se

d
N

um
be

r
of

vC
PU

s,
am

ou
nt

of
R

A
M

,
an

d
da

ys
of

th
e

w
ee

k
M

ul
tiv

ar
ia

te
po

ly
no

m
ia

l
m

od
el

re
gr

es
si

on
L

es
s

su
ita

bl
e

fo
r

co
m

pl
ex

re
la

tio
ns

hi
ps

be
tw

ee
n

pa
ra

m
et

er
s

an
d

ex
ec

ut
io

n
tim

e
Y

ad
w

ad
ka

r
et

al
.(

20
17

)
PA

R
IS

Pr
ed

ic
tio

n-
ba

se
d

A
pp

lic
at

io
n

‘fi
ng

er
pr

in
t’

,
V

M
co

nfi
gu

ra
tio

n
R

an
do

m
-F

or
es

t
M

od
el

B
ur

de
ns

th
e

us
er

w
ith

pr
ov

id
in

g
a

re
pr

es
en

ta
tiv

e
w

or
kl

oa
d

A
lip

ou
rf

ar
d

et
al

.(
20

17
)

C
he

rr
yP

ic
k

Se
ar

ch
-b

as
ed

R
ep

re
se

nt
iv

e
w

or
kl

oa
d

B
ay

es
ia

n
op

tim
iz

at
io

n
B

ur
de

ns
th

e
us

er
w

ith
pr

ov
id

in
g

a
re

pr
es

en
ta

tiv
e

w
or

kl
oa

d
H

su
et

al
.(

20
18

a)
Sc

ou
t

Se
ar

ch
-b

as
ed

L
ow

-l
ev

el
m

et
ri

cs
an

d
hi

st
or

ic
al

da
ta

fr
om

ot
he

r
w

or
kl

oa
ds

Se
ar

ch
-s

pa
ce

ex
pl

or
at

io
n

th
ro

ug
h

re
la

tiv
e

or
de

ri
ng

,
pa

ir
w

is
e

co
m

pa
ri

so
n

&
tr

an
sf

er
le

ar
ni

ng

R
eq

ui
re

s
ru

nn
in

g
a

w
or

kl
oa

d
m

ul
tip

le
tim

es

H
su

et
al

.(
20

18
b)

A
rr

ow
Se

ar
ch

-b
as

ed
L

ow
-l

ev
el

pe
rf

or
m

an
ce

in
fo

rm
at

io
n,

su
ch

as
C

PU
ut

ili
za

tio
n

an
d

m
em

or
y

an
d

I/
O

pr
es

su
re

Tr
ee

-b
as

ed
le

ar
ni

ng
m

et
ho

d
(E

xt
ra

-T
re

es
al

go
ri

th
m

)
R

eq
ui

re
s

ru
nn

in
g

a
w

or
kl

oa
d

m
ul

tip
le

tim
es

H
su

et
al

.(
20

18
c)

M
ic

ky
Se

ar
ch

-b
as

ed
E

xe
cu

tio
n

tim
e

&
op

er
at

io
na

l
co

st
U

pp
er

C
on

fid
en

ce
B

ou
nd

R
eq

ui
re

s
ru

nn
in

g
a

w
or

kl
oa

d
m

ul
tip

le
tim

es
Sa

m
re

en
et

al
.(

20
19

)
Ta

m
ak

ko
n

Pr
ed

ic
tio

n-
ba

se
d

A
ux

ili
ar

y
da

ta
an

d
hi

st
or

ic
al

da
ta

M
ul

tiv
ar

ia
te

Po
ly

no
m

ia
l

R
eg

re
ss

io
n,

Su
pp

or
t

V
ec

to
r

R
eg

re
ss

io
n,

an
d

R
an

do
m

Fo
re

st
s,

us
in

g
tr

an
sf

er
le

ar
ni

ng

R
eq

ui
re

s
th

e
pr

od
uc

tio
n

of
au

xi
lia

ry
da

ta

Sa
m

ue
l

et
al

.(
20

20
)

A
2C

lo
ud

-R
F

Pr
ed

ic
tio

n-
ba

se
d

PE
R

F
tr

ac
es

of
H

PC
ap

pl
ic

at
io

n,
cl

ou
d

tr
ac

es
of

be
nc

hm
ar

k
ap

pl
ic

at
io

ns
,h

is
to

ri
ca

l
da

ta

R
an

do
m

-F
or

es
t

C
la

ss
ifi

er
D

ec
ou

pl
in

g
ap

pl
ic

at
io

ns
an

d
in

st
an

ce
ty

pe
s

lim
its

th
e

re
pr

es
en

ta
tio

n
of

th
ei

r
co

m
pl

ex
in

te
rp

la
y

A
i

et
al

.(
20

21
)

A
2C

lo
ud

-H
Pr

ed
ic

tio
n-

ba
se

d
PE

R
F

tr
ac

es
of

H
PC

ap
pl

ic
at

io
n,

cl
ou

d
tr

ac
es

of
be

nc
hm

ar
k

ap
pl

ic
at

io
ns

,h
is

to
ri

ca
l

da
ta

V
ar

ie
ty

of
su

pe
rv

is
ed

an
d

no
n-

su
pe

rv
is

ed
M

L
al

go
ri

th
m

s

R
eq

ui
re

s
an

ad
di

tio
na

l
al

go
ri

th
m

to
se

le
ct

a
re

co
m

m
en

de
r

al
go

ri
th

m
B

et
tin

g
et

al
.(

20
23

)
O

ik
on

om
os

Pr
ed

ic
tio

n-
ba

se
d

In
st

an
ce

ty
pe

,h
ar

dw
ar

e
&

ap
pl

ic
at

io
n

pa
ra

m
et

er
s

M
ul

ti-
L

ay
er

Pe
rc

ep
tr

on
D

N
N

R
eq

ui
re

s
la

rg
e

am
ou

nt
s

of
hi

st
or

ic
al

da
ta

Th
is

w
or

k
O

ik
on

om
os

-I
I

H
yb

ri
d

(R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g)
In

st
an

ce
ty

pe
s,

ha
rd

w
ar

e
&

ap
pl

ic
at

io
n

pa
ra

m
et

er
s

V
ar

ia
nt

of
N

eu
ra

l-
L

in
U

C
B

w
ith

M
L

P

similar’, but does not further specify in which way the
workloads are similar.

Samuel et al. [13] proposed A2Cloud-RF, a prediction-based
approach which, like PARIS, decouples the characteristics of
the applications and cloud instances. This is done by profiling
them separately: the instances for performance using standard
benchmark applications, and the applications for resource
usage with the Linux perf application. A Random-Forest
Classifier (RFC) is used to recommend an instance. The RFC
can directly classify instance types as ‘excellent’, ‘good’,
‘okay’, or ‘bad’, based on these profiles. It can also classify
applications as either computationally intensive, balanced, or
memory-intensive, and use historical data of similar applica-
tions to create the aforementioned classification. Even though
this classification of instance types is useful, but given the huge
amount of available instance types, a classification in four cat-
egories is rather rough. Decoupling applications and instance
types reduces the need for test runs, but also makes it more
difficult to capture the complex interplay between application
performance, resource use, and available hardware. It remains
unclear how the perf traces generated for each application
account for the differences in behavior that applications may
have on various heterogeneous types of architecture.

Ai et al. [14] presented an expanded version of A2Cloud-RF,
named A2Cloud-H (Hierarchy). Rather than only using a RFC,
A2Cloud-H uses a variety of machine learning algorithms,
divided into two modules: an unsupervised learning module
(USL), and a supervised learning module (SL). Both modules
are contained in a decision module. When a job request
comes in, the decision module selects an algorithm from both
modules, based on the popularity of the model (measured by
the number of publications and the number of citations), the
historical accuracy, and the F1 score. Users themselves get
the final say as to whether the want to use the algorithm from
the USL or the SL module. Even though offering a variety of
algorithms might make the system more generalizable, it also
makes it more complex: it creates the need for an additional
algorithm to select a recommender algorithm.

Our previous work, Oikonomos [3], is a prediction-based
algorithm that works in an opportunistic, data-driven fashion.
Starting with the assumption that a single HPC application
is executed a myriad times with different parameter values,
Oikonomos consists of a Multi-Layer Perceptron (MLP) arti-
ficial neural network that takes the specific parameter values of
the job and the hardware characteristics of a specific instance
type as its input, and returns a prediction of the execution
time. The network is trained using historical data. The users
themselves only have to provide the parameter values they
want to use. Oikonomos showed that a general MLP can be
used as a general-purpose solution for cloud recommendation.
The main weakness of Oikonomos is that it relies on a large
amount of historical data, which might not be practical or
available, especially for new applications. This is a problem
that Oikonomos shares with other data-driven, prediction-
based algorithms but neural networks tend to be especially
vulnerable to it. Furthermore, the application was tested on

balanced datasets; in reality, the datasets will not be balanced.
In summary, in the prediction-based approaches, there tends

to exist a trade-off between more specific modeling (for in-
stance by fitting a formula or by fingerprinting) and a reliance
on considerable amounts of data. For search-based approaches,
there is a trade-off between exploration and exploitation: more
exploration might lead to better recommendations, but will
also lead to higher overhead costs, whereas early exploitation
will lead to lower overhead costs but might make the recom-
mendations less accurate.

The work we present in this paper, Oikonomos-II, like
Oikonomos, has an MLP at its core, and uses historical data.
However, like Micky, we approach the problem of cloud
resource recommendation as a multi-armed bandit problem,
in order to explore the search space for giving better recom-
mendations. Oikonomos-II can be seen as a hybrid approach,
combining the advantages of search-based and prediction-
based algorithms. In this way, it overcomes the limitations
of earlier approaches.

III. DESIGN

As the extensive related-work section demonstrates, there is
a need for a middleware layer for resource recommendation
in a heterogeneous HPC system that aids the user in selecting
the hardware platform that is best-suited for the job they
need to run. We avoid performance-model construction, as
the complex interplay between the application parameters
and the execution platform call for an application-agnostic
approach. We also avoid running the same job more than
once: we assume a stream of incoming jobs with different
parameter values each time. Oikonomos-II gets to make only
one decision regarding the instance type per job, and gets to
observe the execution time and costs of only that particular
job execution. In contrast to recommenders like Oikonomos,
we assume the absence of any preexisting historical execution
data. Therefore, the decisions that Oikonomos-II makes not
only influence the costs and execution time of one particular
job but also the available data to base future decisions on.

Because of the absence of preexisting historical data,
Oikonomos-II is forced to take risks by recommending in-
stance types it has not encountered before. At the same time,
though, Oikonomos-II has to optimize performance for its
users. This dilemma is known as the exploration-exploitation
dilemma, which is a general problem to be found in data-
driven, decision-making processes where a feedback loop
exists between data gathering and decision making [15]. This
becomes most clear in a class of problems known a multi-
armed bandit problems.

A. The Contextual Multi-Armed Bandit Problem

Lattimore and Szepesvári [16] describe the bandit problem
as a sequential game between a learner and an environment.
Played over n rounds, for each round t ∈ [n], the learner picks
an action at from a set of actions A. After the action is chosen,
the environment reveals a reward rt ∈ R. The learner does
not get to see the rewards associated with the other actions.

The learner cannot see into the future, so in the classical
multi-armed bandit problem, it has to rely on the history
Ht−1 = (a1, r1, . . . , at−1, rt−1) in order to make decisions.
The learner is expected to adopt a policy π: a mapping from
histories to actions. Most commonly, the goal is for the learner
to find a policy that maximizes the cumulative reward over
all rounds

∑n
t=1 rt. The regret of a policy π is defined as

the difference between the cumulative expected reward using
policy π and the cumulative reward of an optimal policy π∗.
Cumulative regret will often grow in a logarithmic fashion
for good policies: cumulative regret will increase relatively
fast in the beginning, when there is little historical data and a
strong need for exploration, and will slow down with time,
as the amount of historical data grows, allowing for more
exploitation. Bandit algorithms are part of the wider class of
reinforcement-learning algorithms.

The bandit problem has been studied since the 1930s [17],
but interest has skyrocketed over the last two decades because
of its applicability in online environments. Dynamic pricing
of online airplane bookings is a good example of a bandit
problem: when a visitor searches for a flight, the website picks
a price to offer to the visitor. The reward is revealed when the
customer either books the flight or leaves without booking.
The goal of the algorithm is to maximize total cumulative
profit over all visitors [18].

Contextual knowledge can be essential for adopting a policy
to make decisions. For instance, in the airplane booking
example, it might be useful to know the IP address of the
visitor. After all, the visitor’s location might be correlated to
the price they are willing to pay. Context can also consist of
similarity information regarding the actions in A. A visitor
might be willing to book a flight on a different date, or to a
different airport, and showing them such options could lead
to a higher chance of booking. Multi-armed bandit problems
where context plays a role are known as contextual bandits.

Two of the most widely used algorithms for solving the
exploration-exploitation dilemma in multi-armed bandit prob-
lems are Upper Confidence Bound (UCB) and Thompson
Sampling (TS). UCB was first proposed by Auer et al. [19],
and is based on the principle of optimism in the face of
uncertainty. This means that the algorithm estimates the ex-
pected reward, as well as a confidence bound for each action,
and chooses the action that has the highest upper confidence
bound. Whereas UCB is aimed at estimating the reward (see
Figure 1), TS builds a probability model based on previous
rewards, and then samples from this model to choose an
action [17]. Both TS and UCB are widely used and have strong
theoretical guarantees on the regret bound.

The original UCB and TS algorithms do not take contextual
information into account. However, they have been used as
bases for algorithms that do work with contextual information.
One of the most popular contextual bandit algorithms is
LinUCB, proposed by Li et al. [20]. The algorithm assumes
a linear relationship between the context parameters and the
rewards. The relationship is represented by a vector θ, which
is to be learned. LinUCB was presented in two versions: a

expected
reward E[r]

re
w

ar
d

A B C
actions

confidence
interval

upper confidence
bound

Fig. 1. The UCB algorithm: The expected reward E[r] is assessed for each
option, as well as the confidence interval. The algorithm will choose the option
with the highest upper confidence bound. Even though E[r] is the highest for
action B, the algorithm will choose action A, as its upper confidence bound
is higher: optimism in the face of uncertainty.

disjoint version (where only one vector of context parameters
in used) and a hybrid version (where two context vectors
are used: one for parameters describing the context in round
t, and one for parameters that describe the actions in A).
Li et al. applied the algorithm to personalized news-article
recommendation and showed that it performs better than the
original UCB algorithm.

The requirement of a linear relationship between context
parameters and rewards in LinUCB is restrictive. For instance,
in the case of cloud HPC, the relationship between applica-
tion parameters, hardware, and execution time is potentially
complex. This requirement, however, can be overcome using
an artificial neural network (ANN). We will mention two
relevant publications. Zhou et al. presented NeuralUCB, which
feeds the context vector to a neural network [21]; NeuralUCB
is a generalized version of LinUCB, achieving the regret
bound of LinUCB without the aforementioned requirement.
However, as the whole network is used for exploration, the
algorithm is very complex and computationally expensive for
large neural networks. Addressing this issue, Xu et al. pre-
sented an adaptation where representation is decoupled from
exploration [4]. Their algorithm, Neural-LinUCB, is based on
the principle of deep representation and shallow exploration:
it uses the entire ANN to learn the relationship between the
context vectors and the rewards, but only uses the last layer for
exploration. In this way, deeper and wider ANNs can be used,
allowing for the representation more complex context-reward
relationships. Additionally, the way in which the relationship
vector θ is calculated after each round is highly parallelizable,
allowing for better performance. The authors showed that
Neural-LinUCB achieves similar performance to NeuralUCB,
while being much less computationally expensive.

Betting et al. [3] showed with Oikonomos that a deep MLP
can be used to recommend an optimal cloud-instance type
for HPC applications, based on the input-parameter values.
However, as Oikonomos was purely prediction-based, it relied

UCB calculation
submitted job

job output

recommend
instance type

Database
Execution time Tt
job & instance parameters

run job on
recommended
instance type

retrain?

historical data

yes

Update
At and θt

no

Refit scalers &
retrain ANN

Fig. 2. Schematic overview of Oikonomos-II: While the user gets the job output they want, the algorithm saves the parameters of the job and its execution
time, saves it in a database, and uses Neural-LinUCB to make better choices over time.

expected
reward

A

jt

B

C

incoming job

instance types

Jo
b

pa
ra

m
et

er
s

In
st

an
ce

 ty
pe

 p
ar

am
et

er
s

ve
ct

or
 q

t

ve
ct

or
 θ

t-1

• = E[r]

UPPER
CONFIDENCE

BOUND
+

MLP

Fig. 3. Oikonomos-II UCB calculation: The job parameters and the instance type parameters are concatenated, and passed through an MLP. The output vector
qt is multiplied with vector θt−1 to find the expected reward, and A−1

t−1 is used to calculate the confidence bound. For a detailed description of how θt−1

and A−1
t−1 are determined, see Algorithm 1.

on a large amount of preexisting training data. The absence
of this data creates a contextual multi-armed bandit problem.
A consists of all possible instance type recommendations,
whereas the rewards are a function of execution time and/or
usage costs. Each round t involves a decision to recommend
an instance type to a specific job. We define ‘job’ as the
(requested) execution of the application with specific param-
eter values. The context, therefore, consists of both round-
specific context (the input parameters of the job), as well
as action-specific context (the hardware parameters of the
instance types). The non-linear relationship between context
and rewards rules out traditional LinUCB. Because of the
complexity and computational costs of NeuralUCB for deeper
neural networks, as well as the opportunities for parallelism
that Neural-LinUCB offers, Neural-LinUCB was chosen to
solve the multi-armed bandit problem that Oikonomos-II faces.

B. Oikonomos-II design

Figure 2 shows the overall architecture of Oikonomos-II,
and a detailed description of its workings can be found in
Algorithms 1 and 2. We assume a sequential stream of jobs,
with each round t corresponding to the recommendation of

an instance type and subsequent execution of job jt. Job jt
is defined by a vector pt of parameter values. Furthermore,
we assume a set of S available instance types s; for every s,
there is a vector hs containing hardware-parameter values of
the instance type, such as the number of vCPU cores, memory
size, GPU type, etc. A matrix A0, and vectors b0 and θ0 are
initialized before any jobs are processed.

We make the assumption that each job jt can start only
when job jt−1 has finished. Each action a ∈ A is the act of
assigning a job to an instance type. Action at,s signifies the act
of assigning job jt to instance type s for execution. The context
vectors x for Oikonomos-II consist of both the application
parameters and the hardware parameters of the instance type.
Here, we simply concatenate the vectors pt and hs to create
xt,s. Theoretically, it is possible to implement a hybrid version
of Neural-LinUCB to evaluate pt and hs separately, but this is
to a large extent non-parallelizable and computationally much
more expensive, to the extent that we consider it infeasible.
Furthermore, combining pt and hs in a single context vector
allows the MLP to learn possibly complex interplays between
hardware and application parameters.

We use the combined context vector xt,s to calculate the

Algorithm 1 Oikonomos-II adaptation of Neural-LinUCB
1: Input: regularization parameter λ > 0, number of jobs J , vector of retraining rounds k, exploration parameter α > 0,

MLP ϕ(x,w), context scaler function σx(x), reward scaler function σr(r), custom reward function r(T)
2: Initialization: A0 = λI, b0 = 0, and vector θ0 of length d filled with values 1

d ,
MLP weights wL initialized in a randomized way, empty database D

3: for t = 1, . . . , J do
4: receive job parameter vector pt

5: concatenate pt with vectors {h0, . . . ,hS} to obtain unscaled context vectors {xt,0, . . . ,xt,S}
6: scale each context vector with scaler function σ(x) to obtain scaled context vectors {x(σ)

t,0 , . . . ,x
(σ)
t,S}

7: choose action at = argmaxs∈[S] σ
−1
x

(
θ⊺
t−1ϕ(x

(σ)
t,s ;wL) + αt∥ϕ(x(σ)

t,s ;wL)∥A−1
t−1

)
, and obtain execution time Tt

8: calculate reward rt from Tt, using reward function r(T)
9: store tuple {xt,at ;Tt} in D

10: if t ∈ k then
11: σx(x); σr(r); At; bt ← outputs of Algorithm 2
12: else
13: At = At−1 + ϕ(x

(σ)
t,at

;wL)ϕ(x
(σ)
t,at

;wL)
⊺ , bt = bt−1 + rtϕ(x

(σ)
t,at

;wL)
14: end if
15: update θt = A−1

t bt
16: end for
17: Output: wL,J ; D

Algorithm 2 Update ANN weights and refit scalers
1: Input: Database D, weights wL, MLP ϕ(x,w), current round t, soft update parameter τ ∈ (0, 1]
2: Initialization: For each tuple {xt,at

;Tt} ∈ D, load all xt,at
into feature set X . Calculate rewards rt from Tt and load

these into target set Y . Copy wL into wTr. Define a loss function L. Initialize Lmin =∞
3: Take a sample from X,Y , and divide into training set Xtr, Ytr and validation set Xv, Yv

4: Refit σx to Xtr and σr to Ytr, and scale vectors X , Xtr, Xv , Y , Ytr, Yv accordingly. Divide the sets into mini-batches.
5: for each epoch do
6: Use ϕ(x,wL) to recalculate A and b for each data point ∈X,Y (see Algorithm 1)
7: Recalculate θt for each data point in Xtr, Ytr and Xv, Yv

8: Update wT by performing backpropagation using the training set and loss function L
(
θ⊺
t−1ϕ(x

(σ)
t,s ;wTr),

ˆ
r
(σr)
t

)
9: Soft update step: wL ← τwTr + (1− τ)wL

10: Calculate validation loss Lv , using wL, the validation set, and loss function L
11: if Lv < Lmin then
12: wmin = wL
13: Lmin = Lv

14: end if
15: end for
16: wL = wmin

17: Use ϕ(x,wL) to recalculate At and bt
18: Output: wL; σx(x); σr(r); At; bt

upper confidence bound for the reward of each job-instance
type combination, as is done in the original Neural-LinUCB
algorithm. The vector qt = ϕ(xt,s;wL) is obtained by passing
xt,s through the MLP. qt is multiplied with vector θt−1 to
find the expected reward, and the inverse of At−1 is used to
calculate the confidence bound. Following the notation used
by Xu et al., we use [k] to denote a set {1, . . . , k}, k ∈ N+.
For a semi-definite matrix A ∈ Rd×d and vector x ∈ Rd, the
Mahalanobis norm is denoted as ∥x∥A =

√
x⊺Ax. The process

is visualized in Figure 3. The action with the highest upper
confidence bound is recommended to the user.

As shown in Figure 2, after the algorithm recommends an

instance type, the job is executed there. The job output is then
returned to the user. The execution time Tt, as well as vectors
pt and hs are stored in a database. The ANN is retrained
periodically; it would be computationally expensive to retrain
after every round. However, At, bt, and θt are calculated after
every round, and are used for UCB calculation and instance-
type recommendation in the next round.

The Oikonomos-II algorithm is described in detail in Al-
gorithms 1 and 2. For a more detailed explanation of Neural-
LinUCB and proof of the regret bound, we refer the reader to
the original paper. We made several adaptations to the Neural-
LinUCB algorithm to make it suitable for our application. The

2000 w
idth linear

Instance N
orm

alization

Leaky R
eLU

 (1e-2)

D
ropout layer (0.1)

x 5

1000 w
idth linear

Instance N
orm

alization

Leaky R
eLU

 (1e-2)

D
ropout layer (0.1)

1000 w
idth linear

Leaky R
eLU

 (1e-2)

2000 w
idth linear

Instance N
orm

alization

 R
eLU

700 w
idth linear

S
igm

oid

input
vector
x

output
vector
q

Fig. 4. The architecture of the MLP used in Oikonomos-II

original Neural-LinUCB algorithm retrains the ANN every k
steps. We noticed that the network requires frequent retraining
in the beginning, and requires less frequent retraining later,
when there is more data available. Therefore, rather than
defining k as an integer, we define k as a vector of positive
integers. If t ∈ k, the ANN is retrained after round t. The size
and content of k can be chosen by the user.

It was also noted that, when training the ANN, there exists
a feedback loop between the weights of the ANN and the
feature vector θ: after all, θ depends on A and b, and
A, b are updated after every round using the MLP output
vector q. This led to instability and reduced performance
during backpropagation, as θ is used in the loss function (see
Algorithm 2). We resolved the issue by applying soft updating,
as described by Lillicrap et al. [22], where the target network
is used to recalculate θ for each data point at the start of
each epoch, and backpropagation is applied to the training
network. A soft-update step is performed at the end of each
epoch. This allowed us to use deeper neural networks, which
makes it possible to represent more complex relationships
between inputs and rewards. We also improved the MLP
training process by applying best-practise techniques, such as
data scaling, training with mini-batches, and early stopping
with separate training and validation sets in Oikonomos-II.

IV. IMPLEMENTATION

The system was implemented in Python. As machine-
learning framework, we used PyTorch [26]. An MLP of nine
linear layers was used, with a maximum width of 2,000.
Normalization and dropout layers were used to enhance per-
formance. (Leaky) ReLU functions were used as activation
layers, except for the last layer, where a sigmoid function was
used (which was observed to improve performance). The full
architecture is summarized in Figure 4. The length d of the
output vector (which corresponds to the length of vector θ)
is 700. As loss function L, we used the Mean-Squared Error
(MSE) loss function. The data set (X,Y) used for training
consists of a maximum of random 3000 samples from D; for
t ≤ 3000, (X,Y) = D. The minibatch size was initialized at
1, and slowly increased as D increased, to a maximum of 16.

The MLP was retrained after 50 episodes, and then at
intervals of 500 episodes. Of the dataset, 85% was used as
a training set, and the remaining 15% as a validation set.
Backpropagation is performed using the Adam optimizer [27].
Training is done for 500 episodes, the weights of the episode
with the lowest validation loss are retained. As for the reward

TABLE II
HPC APPLICATIONS USED FOR THE OIKONOMOS-II EVALUATION, AND

THEIR PARAMETER RANGES

(E) HPCC (F) simHH
parameter range parameter range

MPI-procs 4-8 time-steps 1 - 110,000
N 20,000 - 40,000 connectivity 0.5 - 1.0
NB 100 - 20,000 neurons 1000 - 10,000

(G) MNIST (MLP) (H) CIFAR-10 (CNN)
parameter range parameter range

epochs 1 - 1000 epochs 1 - 1000
Training 1 - 5000 Training 1 - 3000
batch size batch size
Test batch size 1 - 5000 Test batch size 1 - 3000
Layer 1 size 1 - 750 Layer 1 size 1 - 500
Layer 2 size 1 - 1000 Architecture type 1 - 4

function: as LinUCB strives to maximize the reward value,
and our goal is to minimize either costs or execution time,
we defined the reward function r(x) = 1

x , with x the costs
in dollars, or the execution time in seconds. The parame-
ter set was scaled using StandardScaler, the rewards
were scaled using PowerTransformer, both from the
sklearn.preprocessing library for Python.

V. EVALUATION

A. Experimental setup

For the evaluation of Oikonomos-II, we used four differ-
ent benchmark applications. Three of these are real HPC
applications, the other one is a synthetic benchmark from
the ARCHER suite. The first is simHH, a neurosimulator
developed at the Erasmus Medical Center, Rotterdam [23]. It
simulates a wide range of biologically plausible, conductance-
based Hodgkin-Huxley neural models. These models work on
non-embarrassingly parallel workloads and uses basic solvers
operating on short time intervals. The second application
involves training an MLP Deep Neural Network with Google
TensorFlow using the widely-used MNIST database [24].
MNIST is a standard dataset in TensorFlow for testing AI
classification. Training time varies based on adjustable hyper-
parameters. The third application is training a TensorFlow-
based Convolutional Neural Network (CNN) using the CIFAR-
10 database. CIFAR-10 consists of color images from ten
classes; the CNN is trained to classify images. The training
time is influenced by variable parameters such as the number
of convolutional layers, fully-connected layer size, epochs, and
test/training minibatch sizes. HPCC [25] is a collection of syn-
thetic benchmarks that measure the range of memory-access
patterns. The application has MPI and OpenMP support. There
are no available GPU or FPGA implementations of HPCC, but
the number of MPI processes can be varied. The application
parameters we varied are stated in Table II. As for instance
type parameters, we used the number of vCPUs, the instance
memory in MiB, and the number of GPUs.

The Amazon instance types that we have used for our
evaluation are shown in Table III. Without loss of generality,
they were selected so as to create a diversity of hardware

TABLE III
AMAZON EC2 INSTANCE TYPES USED FOR OIKONOMOS-II EVALUATION

Instance type CPU type vCPU no. Memory (GiB) GPU type GPU mem. (GiB)

t2.2xlarge Intel Xeon Family @ 3.3 GHz 8 32 – –
c5a.4xlarge AMD EPYC 7R32 @ 2.8 GHz 16 32 – –
m5a.4xlarge AMD EPYC 7571 @ 2.5 GHz 16 64 – –
m5a.8xlarge AMD EPYC 7571 @ 2.5 GHz 32 128 – –
c5a.8xlarge AMD EPYC 7R32 @ 2.8 GHz 32 64 – –
c5a.12xlarge AMD EPYC 7R32 @ 2.8 GHz 48 192 – –
g3.4xlarge Intel Xeon E5-2686 v4 @ 2.3 GHz 16 122 Tesla M60 8.0
g4dn.4xlarge Intel Xeon Family @ 2.5 GHz 16 64 Tesla T4 16.0

TABLE IV
DISTRIBUTION OF BEST INSTANCE TYPE IN ORACLE SETS (TIME / COST)

simHH MNIST HPCC CIFAR-10
t2.2xlarge 1.66% /

2.44%
0.00% /
1.52%

0.34% /
1.60%

0.00% /
0.00%

c5a.4xlarge 4.66% /
25.58%

1.06% /
34.00%

0.00% /
98.40%

0.00% /
0.00%

m5a.4xlarge 2.70% /
1.10%

0.00% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

m5a.8xlarge 0.16% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

c5a.8xlarge 6.70% /
0.18%

0.34% /
0.00%

75.44% /
0.00%

0.00% /
0.00%

c5a.12xlarge 26.28% /
0.00%

2.10% /
0.00%

24.22% /
0.00%

0.00% /
0.00%

g3.4xlarge 5.02% /
18.06%

0.00% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

g4dn.4xlarge 52.82% /
52.64%

96.50% /
64.48%

0.00% /
0.00%

100.00% /
100.00%

options, but we also selected some instance types from the
same family. This allows us to test if Oikonomos-II can discern
between instances that are relatively similar. Two instance
types have a GPU available, three are compute-optimized, and
three are general-purpose instances.

To evaluate the performance of Oikonomos-II, we used
datasets where all the jobs have been executed fully on each
of the eight instance types. We call these datasets oracle
sets, since they provide us with full insight into the best
possible policy and the regret of each different policy.1 By
using these sets as a simulation environment, it was possible
to evaluate the regret for each application. For our four
applications, we used oracle sets of 5,000 jobs. The sets were
created by executing jobs on the Amazon EC2 instances, and
then augmenting the data by manually studying the behavior
of these applications, in order to create sets that reliably
represent the application behavior on the cloud instances. We
randomized the order of each of the jobs and presented the
jobs one by one to Oikonomos-II. The algorithm only gets to
see the execution time of a job for the instance type it has
chosen, and it cannot see into the future.

Comparing Oikonomos-II to other work is challenging,
since each author uses their own HPC application to evaluate
performance – the absence of a good benchmark set for cloud
HPC recommendation is a persistent issue in this field. Even
when the same applications are used, differences in parameter
ranges can lead to vastly different data sets. Most standard
HPC benchmark sets are unsuitable for our purpose: they are

1The oracle sets that were used for evaluation can be found at: https://
gitlab.com/c7859/neurocomputing-lab/oikonomos-II data.

designed to characterize specific HPC platforms, and fail to
capture the complex interplay between application character-
istics, individual job input parameter values, and hardware. We
therefore decided to evaluate the performance of Oikonomos-II
in its own right.

We employed three metrics. The first metric is the per-
centage of all rounds for which the best instance type was
recommended. This shows the performance of Oikonomos-II,
including the exploration phase. The second metric is the
percentage of the last 1,000 rounds for which the best instance
type was recommended. By this time, the algorithm has had
the opportunity to explore and should be mostly exploiting.
The last metric is the regret. Regret is usually defined as the
difference between the optimal policy and the actual policy.
The unit and size of the regret differs for every application. In
order to compare the applications, it was decided to express
regret as a percentage of the regret of random policy.

B. Results

We evaluated the performance of Oikonomos-II on all four
applications, optimizing for both execution time and costs. We
analyzed the oracle sets to determine the distribution of the
best option. The most interesting cases are those where the
best choice of instance type depends on the parameter values.
As shown in Table IV, to varying degrees, this is the case for
all benchmarks except for CIFAR-10, where g4dn.4xlarge
is the overall best choice for both cost and time.

Table V shows the evaluation results for all four appli-
cations, employing the three metrics. Despite the fact that
Oikonomos-II starts without any knowledge about any of the
applications, over 5,000 episodes it is able to recommend
the best instance type for jobs it has not seen before. The
percentage of optimal recommendations becomes even higher
when only the last 1,000 episodes are considered. This is
expected: after all, the later the episode, the more the algorithm
can rely on previous observations. However, the numbers are
not much different, as Oikonomos-II has likely converged
much earlier. It is interesting to compare these two metrics
to the data in Table IV. For example, simHH shows a lot of
variation regarding the optimal instance type: the best choice is
heavily dependent on job parameters. The high percentage of
optimal recommendations shows that Oikonomos-II is able to
effectively learn the relationship between input parameters and
optimal instance type. Oikonomos-II appears to perform less
well in predicting the instance with the fastest execution time
for HPCC. We found that this was caused by the fact that two

A B C

Episodes

R
eg
re
t

Fig. 5. A: Cumulative regret for simHH (cost-optimized). Regret increases rapidly in the beginning, but then mostly flatlines. B: Confusion matrix of
recommendation choices for the first 100 episodes for simHH (cost-optimized). True labels are on the x-axis, whereas recommendations are on the y-axis.
Since Oikonomos-II has not explored the space yet, it is forced to explore and make suboptimal choices. C: Confusion matrix for the last 100 episodes for the
same application. Now that Oikonomos-II has explored the relationship between parameters and performance, it mostly exploits and makes optimal choices:
most recommendations coincide with the true best option.

TABLE V
OIKONOMOS-II EVALUATION RESULTS (TIME / COST)

simHH MNIST HPCC CIFAR-10
Optimal action over
all episodes

79.34% /
91.28%

92.92% /
87.16%

54.56% /
97.40%

95.88% /
95.82%

Optimal action over
last 1000 episodes

81.40% /
94.24%

95.60% /
89.50%

68.50% /
97.50%

99.00% /
95.00%

Regret as perc. of
random policy regret

2.12% /
1.57 %

4.42% /
10.59%

2.46% /
1.42%

0.99% /
2.16%

instance types have similar performance for this application.
Therefore, which of those two performs for a particular job is
in part determined by chance. For all applications, the regret is
only a small percentage of the regret of a random policy, which
shows that Oikonomos-II far outperforms a random policy.

Figure 5 gives a more detailed look into the performance of
one of the applications, simHH, optimized for costs. Figure 5A
shows the cumulative regret over time. Cumulative regret
increases rapidly in the beginning as Oikonomos-II is forced
to make sub-obtimal choices in order to explore. However,
it rapidly flatlines. However, regret seems to increase faster
again after about 3,500 episodes. This was likely due to the
fact that, after this point, only a sample of D is used to train
the MLP, in order to increase training speed – when we reran
the experiment without sampling, the sudden jump in regret
disappeared. Even though the original Neural-LinUCB paper
states that performance loss is limited, this figure suggests that
it is not negligible.

Figure 5B shows the confusion matrix for the first 100
episodes for simHH, and Figure 5C shows the confusion
matrix for the last 100 episodes. In the first 100 episodes,
Oikonomos-II has not explored the space yet, but is forced
to explore and make suboptimal choices, which is why the
confusion matrix is rather scattered. However, in the last 100
episodes, Oikonomos-II has explored the relationship between
parameters and performance, and is able to exploit, which is

shown by the fact that almost all points in the matrix lie along
the diagonal.

VI. DISCUSSION

So far, we made the assumption that cloud instances are up
and running, and are readily available; start-up times were not
taken into account. In a real-life scenario, it might be useful
to keep instances running in some situations (for example,
when there is a continuous stream of jobs), whereas in other
situations, it would be better to shut them down between runs.
Developing an algorithm that takes this into account would
be useful, but requires additional information about usage
patterns, which was outside the scope of Oikonomos-II. Still,
this could be an interesting extension of the current work,
when combined with a suitable scheduling algorithm.

Oikonomos-II uses a deep neural network which needs to be
retrained regularly. Retraining can be a time-consuming task
that is best done on specific hardware types, such as a GPU;
this might incur extra costs. However, in our evaluation, we
showed that Oikonomos-II can deliver outstanding results with
a long retraining interval of 500 episodes. Furthermore, it is
possible to reduce the training time by retraining on only a
sample of the data. Xu et al. argued that this is possible for
Neural-LinUCB without significant reduction in performance,
and we expect the same for Oikonomos-II.

The current number of instance types offered by AWS is
over 600. Oikonomos-II was tested on data from eight instance
types, which is only a fraction of the number of instances
offered. However, as there is currently no standard benchmark
set for resource recommendation in cloud HPC, it was neces-
sary to collect our own oracle datasets to evaluate performance.
This required that we limit ourselves to a small selection of
instance types. Even so, the small set of eight instance types
contains sufficient diversity. The fact that oftentimes, there is
not one overall ‘best’ instance type, attests to this.

Oikonomos-II was tested on two types of reward functions:
cost- and time-optimized. A fixed reward function for all
episodes was assumed. However, in a real-life situation, some
users might want the instance type that delivers the fastest
results, whereas other users want to have results at the lowest
cost. Yet others might prefer a balance between these two or
have additional requirements. The current implementation of
Oikonomos-II does not support this diversity of user require-
ments but its design can be easily extended to accommodate
a variety of custom reward functions in the future.

Finally, the assumption was made that jobs arrive and are
dispatched in a sequential manner: a new job arrives when
the previous job has completed. In reality, however, jobs may
arrive simultaneously, and a new job may arrive before the
previous ones have finished. This might affect recommender
performance. However, the problem of delayed feedback in
bandits is well-studied [28], and the structure of Oikonomos-II
is suitable for expansion to incorporate solutions to challenges
that may arise in practice. In addition, it would also be
valuable to assess how Oikonomos-II would perform on other
contextual bandit algorithms, such as Thompson Sampling.
However, this falls beyond the scope of the current work.

VII. CONCLUSION

Oikonomos-II casts the problem of cloud instance-type
selection for different HPC jobs as a contextual multi-armed
bandit problem. It applies a variant of the Neural-LinUCB
algorithm, balancing exploration and exploitation. The system
starts off without knowledge of the application behavior, and
is forced to explore when recommending instances for in-
coming jobs. However, as it gathers knowledge, Oikonomos-II
starts exploiting and converges towards optimal choices. We
evaluated Oikonomos-II on four diverse HPC applications,
where it was shown to converge towards optimal choices,
demonstrating its effectiveness and robustness. Oikonomos-II
avoids the main issues of both prediction-based and search-
based recommenders. Combining the best elements of these
two approaches into a reinforcement-learning recommender
system, Oikonomos-II is both generalizable and accessible,
making it a promising tool for researchers who want to harness
the power of the cloud for their high-performance computing
applications.

REFERENCES

[1] AWS. ”Amazon EC2 Instance Recommendations”, Amazon Web
Services Documentation, https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-instance-recommendations.html, accessed 12-06-2023.

[2] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H. Sidiropoulos, D.
Rodopoulos, I. Sourdis, Z. Al-Ars, C. Kachris, D. Soudris, C. I. De
Zeeuw, et al., ”BrainFrame: a node-level heterogeneous accelerator
platform for neuron simulations,” Journal of Neural Engineering, vol.
14, no. 6, 2017.

[3] J.L.F. Betting, D. Liakopoulos, M. Engelen, C. Strydis, ”Oikonomos:
An Opportunistic, Deep-Learning Resource Recommendation System
for Cloud HPC,” in 2023 IEEE 34th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
2023.

[4] Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu, “Neural
Contextual Bandits with Deep Representation and Shallow Exploration,”
in International Conference on Learning Representations, 2022.

[5] S. Venkataraman, et al., ”Ernest: Efficient performance prediction for
large-scale advanced analytics,” in 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16), 2016.

[6] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair, ”Daleel: Simplifying
cloud instance selection using machine learning,” in NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium, IEEE,
2016, pp. 557–563.

[7] N. J. Yadwadkar, et al., ”Selecting the best VM across multiple public
clouds: A data-driven performance modeling approach,” in Proceedings
of the 2017 Symposium on Cloud Computing, 2017.

[8] O. Alipourfard, et al., ”CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics,” in 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17),
2017.

[9] C.-J. Hsu, et al., ”Scout: An Experienced Guide to Find the Best Cloud
Configuration,” arXiv preprint arXiv:1803.01296, 2018.

[10] C.-J. Hsu, et al., ”Arrow: Low-level augmented bayesian optimization
for finding the best cloud vm,” in 2018 IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE, 2018.

[11] C.-J. Hsu, et al., ”Micky: A cheaper alternative for selecting cloud
instances,” in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), IEEE, 2018.

[12] F. Samreen, G. Blair, and Y. Elkhatib, ”Transferable Knowledge for
Low-cost Decision Making in Cloud Environments,” IEEE Transactions
on Cloud Computing, 2020.

[13] D. Samuel, et al., ”A2Cloud-RF: A random forest based statistical
framework to guide resource selection for high-performance scientific
computing on the cloud,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 24, 2020.

[14] X. Ai, T. Jena, S. Khan, R. Hughes, and V. K. Pallipuram, ”A2Cloud-
H: A Multi-tiered Machine Learning Framework for Cost-Effective
Cloud Resource Selection,” in Proceedings of the Future Technologies
Conference (FTC) 2021, Volume 3, Springer, 2022, pp. 272–291.

[15] J. Rocca, ”The exploration-exploitation trade-off: intuitions and strate-
gies”, published in Toward Data Science (2021).
https://tinyurl.com/rocca2021 , accessed 20-06-2023.

[16] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

[17] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3-4, pp. 285–294, 1933.

[18] A. Slivkins et al., “Introduction to multi-armed bandits,” Foundations
and Trends® in Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019.
Publisher: Now Publishers, Inc.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235–256,
2002. Publisher: Springer.

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th International Conference on World Wide Web, pp. 661–670,
2010.

[21] D. Zhou, L. Li, and Q. Gu, “Neural contextual bandits with UCB-
based exploration,” in International Conference on Machine Learning,
pp. 11492–11502, 2020. Publisher: PMLR.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, ”Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[23] M. Engelen, ”Scalable GPU Acceleration for Complex Brain Simula-
tions,” MSc thesis, Delft University of Technology, 2021. Available at:
http://resolver.tudelft.nl/uuid:b79bbfa7-0c57-4949-b974-83a7d9ee6b39

[24] Image classification, MNIST digits, http://neupy.com/2016/11/12/mnist
classification.html, accessed 14-12-2021.

[25] P. Luszczek, et al., ”Introduction to the HPC challenge benchmark suite,”
Technical report, Lawrence Berkeley National Lab (LBNL), Berkeley,
CA (United States), 2005.

[26] A. Paszke et al., ”PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, pp. 8024–8035, 2019.

[27] D. P. Kingma and J. Ba, ”Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[28] A. Grover et al., ”Best arm identification in multi-armed bandits with
delayed feedback,” in International Conference on Artificial Intelligence
and Statistics, pp. 833–842, 2018.

