Oikonomos: An Opportunistic, Deep-Learning,
Resource-Recommendation System for Cloud HPC

Jan-Harm Betting
Erasmus Medical Center
Rotterdam, The Netherlands
j-betting @erasmusmc.nl

Dimitrios Liakopoulos
National Technical
University of Athens

dim.liak99 @ gmail.com

Abstract—The cloud has become a powerful environment
for deploying High-Performance Computing (HPC) applications.
However, the size and heterogeneity of cloud-hardware offerings
poses a challenge in selecting the optimal cloud instance type.
Users often lack the knowledge or time necessary to make
an optimal choice. In this work, we propose Oikonomos, a
data-driven, opportunistic, resource-recommendation system for
HPC applications in the cloud. Oikonomos trains a Multi-layer
Perceptron (MLP) to predict the performance of a given HPC
application, for different input parameters and instance types.
It, then, calculates the cost of executing the application on
different instance types and proposes the one best-fitting the
user’s needs. We deployed Oikonomos on a diverse mix of HPC
workloads, and found that for all applications, it approached an
optimal policy. The optimal instance type was chosen in 90%
of the cases for seven out of eight applications, scoring a Mean
Absolute Percentage Error (MAPE) consistently below 20 %. This
demonstrated that Oikonomos can provide a practical, general-
purpose, resource-recommendation system for cloud HPC.

Index Terms—resource recommendation, high-performance
computing, deep learning, cloud computing, heterogeneity

I. INTRODUCTION

Cloud computing allows users to access computing re-
sources on demand, without specific knowledge about the
location of those resources, and often without waiting times.
This makes them an attractive option for High-Performance
Computing (HPC): whereas traditional HPC data centers work
with workload managers which place tasks in a queue of pend-
ing jobs, each to be executed on a statically defined hardware
allocation, a modern cloud environment can elastically allocate
the right amount of hardware to a user almost instantaneously,
for as long as the user needs it. Users pay for the time that
they use the resource.

Cloud services such as Amazon EC2 and Microsoft Azure
now offer a wide range of instance types, with different
combinations of system memory, CPU cores, GPUs, and even
FPGAs. At the time of writing, EC2 offers 637 instance types,
allowing users to tailor the hardware to the requirements of
their applications. This makes cloud computing an interesting
option for HPC and has led to the need for efficient resource
orchestration and job scheduling in the cloud. To this end,
technologies such as Kubernetes, Mesos and Docker Swarm
have already been developed.

There is, however, an additional challenge for cloud HPC:
given that application execution time is affected in a typically

Max Engelen
Erasmus Medical Center
Rotterdam, The Netherlands
m.engelen @erasmusmc.nl

Christos Strydis
Erasmus Medical Center
Rotterdam, The Netherlands
c.strydis@erasmusmec.nl

hard-to-predict way by both input size and parameters, as
well as the hardware platform on which it runs, what is the
optimal cloud-instance type to be employed for executing a
particular application workload? Answering this question is
crucial for minimizing application execution time, minimizing
cloud compute fees, or both of the above. Especially for the
case of HPC applications, such savings have a significant
impact on the perceived quality of service and the budget
required to complete a given task.

In this work, we present Oikonomos, an execution-time
predictor and cloud-instance recommender for HPC users.
The Oikonomos predictor relies on the use of a Deep-
Learning (DL) network, specifically a Multi-Layer Perceptron
(MLP), which learns based on multiple runs of a single HPC
application, for different input parameters and on different
instance types. By collecting training data, Oikonomos builds
an application-specific prediction model. Then, using billing
data from the cloud provider, it can estimate the cost of
running the application on each of the instances. This allows
the user to make an informed decision regarding the choice of
instance type. Oikonomos, thus, bridges the gap between HPC
applications and the wide variety of cloud instances available.

Oikonomos puts forward a unique proposal in that it can
operate opportunistically: without the need for extra runs to
help speed up training. In an HPC environment, the volume of
user runs suffices for building an accurate prediction model,
without adding to the user’s usage bill. Furthermore, it is
based on a generic MLP, which can be retrained for different
applications, and is therefore useful for a wide variety of HPC
applications. It also assumes a purely data-driven approach,
which is simple, user-friendly, and robust, steering clear of
complex techniques, such as application traces, microarchi-
tecture simulators and benchmark sampling. Lastly, it can
be trained in pure user space, thus guaranteeing user-data
privacy and maximum flexibility. With the above properties
of Oikonomos in mind, the contributions of this work are as
follows:

e« A novel, MLP-based, instance recommender for HPC

applications in heterogeneous clouds.

o Empirical evidence that a single, properly sized MLP
model can perform consistently well in predicting per-
formance across diverse HPC workloads.

o An in-depth performance analysis of Oikonomos on eight

TABLE I

RELATED WORK IN THE FIELD OF CLOUD INSTANCE TYPE SELECTION

Publication Name Approach Input Mechanism Applications for evaluation
Venkataraman et al. (2016) Ernest Prediction-based ~ Number of machines Non-Negative Various applications, such
(CPU cores) Least-Squares fitting as speech recognition
Yadwadkar et al. (2017) PARIS Prediction-based ~ Application ‘fingerprint’, Random-Forest Model Video encoding, compression,
VM configuration and Serving-style latency
and throughput-sensitive
OLTP workloads.
Chard et al. (2017) SCRIMP Prediction-based ~ Resource usage Case-by-case comparison FastQC and
and performance data no recommender included BWA ALN
of profiling runs
Alipourfard et al. (2017) CherryPick Search-based Representive workload Bayesian optimization Benchmark applications
on Spark and Hadoop
Hsu et al. (2018a) Scout Search-based Low-level metrics Search-space exploration Big Data workloads
and historical data from through relative ordering, on Apache Hadoop &
other workloads pairwise comparison & Spark
transfer learning
Hsu et al. (2018b) Arrow Search-based Low-level performance Tree-based learning method HiBench / spark-perf
information, such as CPU (Extra-Trees algorithm)
utilization and
memory and I/O pressure
Hsu et al. (2018c) Micky Search-based Execution time & Upper Confidence Bound 30 different Spark &
operational cost Hadoop applications
Samreen et al. (2019) Tamakkon Prediction-based ~ Auxiliary data and Multivariate Polynomial Regression, ~ VARD, smallpt, and
historical data Support Vector Regression, ItemRecommender
and Random Forests,
using transfer learning
Samuel et al. (2020) A2Cloud-RF Prediction-based ~ PERF traces of HPC application, =~ Random-Forest Classifier Several HPC applications:
Cloud traces of benchmark LULESH, HH SNNs,
application Best-Feature Digital Rotoscope,
Data migration scheduler
This work Oikonomos Prediction-based Instance type & hardware Multi-Layer ARCHER, TensorFlow

and application parameters

Perceptron DNN

and simHH

diverse HPC applications, which shows its data-driven
robustness for different applications and, thus, its high
reuse value by non-expert HPC users.

The paper is organized as follows: Section II summarizes
related works on performance prediction in cloud HPC en-
vironments. Section III describes the design concepts be-
hind Oikonomos and Section IV details its implementation.
Section V presents a detailed evaluation of the proposed
system followed by a discussion of the findings and potential
improvements in Section VI. Section VII concludes the work.

II. RELATED WORK

Related works can generally be classified as either
prediction-based or search-based ones; see Table 1. Prediction-
based algorithms use offline evaluation of data to predict per-
formance and can quickly suggest optimal hardware configura-
tions but require large amounts of training data. Search-based
approaches evaluate different instance types in succession to
find the optimal choice, which does not require a large amount
of data but may require exploration and making suboptimal
choices. Additionally, exploration can be complex in cases
where a certain job only needs to be run once, which is
common in many HPC applications.

Venkataraman et al. [1] addressed the issue of performance
prediction of large-scale analytics workloads on Amazon EC2
instances. The system, ERNEST, uses a prediction-based ap-
proach which fits four values to a formula using a non-negative
least-squares (NNLS) solver with a ’scale’ parameter and the
number of machines in the job as its input. ERNEST was

evaluated on EC2 r3 instances and achieved errors of less than
20% on most workloads, but is limited in flexibility, designed
for predictable workloads, and not suitable for heterogeneous
instances.

Yadwadkar et al. [2] presented PARIS, another prediction-
based approach for selecting the best Virtual Machine (VM)
among multiple clouds. PARIS uses benchmark workload to
create a profile of the system performance of each available
instance type - this is only performed once for each instance
type. Then, in order to find the best instance type for a par-
ticular task, the user has to provide a representative workload,
which is executed on a small number of instances in order
create a ’fingerprint’ of the application. This ’fingerprint’ is
used to select the best instance via a random-forest model.
Even though running the representative task is less costly than
running the full job, it still incurs additional costs, burdens the
user with presenting a representative workload, and does not
account for differences in input parameters that can influence
the usage patterns of applications.

Chard et al. [3] presented the Scalable Cost-Aware Cloud
Infrastructure Management and Provision (SCRIMP), which
is a multicloud middleware service for provision decisions
for (scientific) applications. SCRIMP offers and interface to
different cloud providers, and recognizes that the application
requirements may be dependent on factors such as input
data, application configuration, and execution environment. In
order to describe these parameters as accurately as possible,
SCRIMP introduces a profiling service. A user can submit a
profiling request for their application, and receives a JSON

file summarizing performance characteristics across different
instance types under different configurations. This can be
a good basis for a HPC resource recommender; however,
SCRIMP does not provide such a recommender: it focuses on
interaction with a multicloud infrastructure, not on resource
recommendation.

Alipourfard et al. [4] presented CherryPick, a search-
based approach that uses Bayesian optimization to build a
performance model for applications. The user supplies a
workload representative of the application, the objective, and
the constraints, and CherryPick finds a list of candidates for
the optimal hardware configuration. The system also runs
benchmarking workloads on different clouds to measure the
cloud noise and the Bayesian-optimization engine searches for
the best configuration in an iterative manner. Even though the
system finds the optimal configuration in a small number of
iterations, it still requires running the workload multiple times
to find the best configuration, and, like PARIS, is dependent
on the selection of representative workloads by the user.

Hsu et al. presented three different search-based implemen-
tations; Scout [5], Arrow [6], and Micky [7]. Scout is a pair-
wise comparison algorithm that uses low-level performance
information, such as memory and CPU usage, to avoid certain
types of cloud configurations, while Arrow uses Bayesian
optimization with a tree-based learning method, augmented
with low-level data in order to reduce search costs. Micky ap-
proaches the problem of finding the best VM as a multi-armed-
bandit problem and uses the strategy of Upper Confidence
Bound to make choices with the highest expected rewards.
Micky optimizes a batch of workloads, rather than a single
workload, and can work in conjunction with Scout to search
for the best configuration. However, all of these approaches
require running the same workload multiple times to find the
best configuration, which can be wasteful in real-life HPC
scenarios where parameters vary.

More recently, two prediction-based solutions have been
presented. Samreen et al. presented Tamakkon [8], which
uses a transfer-learning approach to adapt a base learner
(Multivariate Polynomial Regression, Support Vector Regres-
sion, and Random Forests are used) to a specific task by
using profiling data from similar applications. To identify
if two application-profiling data sets come from the same
distribution, a Kolmogorov-Smirnov test is used. This makes
the algorithm useful for different applications and hardware
configurations. The systems does require the production of
auxiliary data in the cloud, which entails additional costs.

Samuel et al. presented A2Cloud-RF [9], a prediction-based
approach specifically aimed at HPC applications, which pro-
files the characteristics of the applications and cloud instances
separately. The cloud instances are profiled with benchmarks
for computations, main memory, and disk performance; the ap-
plications are profiled with computation and memory counters.
The data is combined, and a Random-Forest Classifier (RFC)
is used to make a recommendation about the instance. This
decoupling eliminates the need for extensive data collection.
However, it may not accurately reflect an application’s needs

because the features of an instance type are characterized by
a predefined set of benchmarks, which can be restrictive.

Besides the aforementioned works being either too complex,
too restrictive, too inflexible or too simplistic in nature, none of
them takes the individual parameter values of the specific HPC
job as input to predict the execution time or advice a cloud
instance to the user. However, as Smaragdos et al. [10] showed,
the input parameters of a HPC application can drastically
affect the choice of hardware. Oikonomos aims at using the
input parameters of an application to predict execution time
in order to recommend an optimal instance type, without
requiring knowledge about the performance structure of the
application and without the need for running a specific job
multiple times.

III. OIKONOMOS DESIGN

As mentioned above, Smaragdos et al. demonstrated the
need for a decision-making middleware layer in an hetero-
geneous HPC system between the user and the hardware; one
that selects the best-suited hardware platform among various
available ones (CPUs, GPUs, dataflow FPGASs) for the task at
hand [10].

The potential complexity and interdependencies of the
various application parameters and the underlying execution
platform call for an application-agnostic strategy for achieving
performance prediction. In order to create a model that is
generalizable, here we avoid performance-model construction
and rely on a data-driven approach, provided that enough data
is at our disposal every time. We propose the use of an MLP
that takes application input parameters and available cloud-
instance type data as its input to predict application execution
time. This is used to advise the user on choosing an optimal
instance, and giving an estimation of the computing costs they
can expect.

The MLP is the most commonly used architecture in
DL applications. MLPs are used to solve classification and
pattern-recognition problems, but are also very suitable for
regression analysis. Hence, they can be used for estimating
numerical values. They are considered the most general-
purpose types of artificial neural networks. There are more
specialized DL architectures, such as Convolutional Neural
Networks (CNNs), which are widely used in the field of
computer vision, and Recurrent Neural Networks (RNNs),
which are good at processing input sequences. However, since
our data set consists of individual data points, an MLP is
the most logical choice. An MLP learns through the process
of backpropagation, in which the weights of the connections
between different neurons of different layers are adjusted in
order to minimize a predefined error function. Training is
performed in a supervised way, with a training set in which
the correct outcomes (in our case, the application execution
times) are known. To prevent overfitting, an additional set
(the validation set) is used to assess the prediction quality after
each training epoch. After training, the network’s functionality
is assessed with a test set. It is important that these three
data sets be independent from one another, in order to get a

TABLE II
DESCRIPTION OF THE APPLICATIONS USED TO EVALUATE OIKONOMOS

Application name Type Source No. of input Description
parameters
BENCHIO Synthetic ARCHER 2 Processor write-bandwidth evaluation
GROMACS Realistic ARCHER 2 Molecular-dynamics simulation
CP2K Realistic ARCHER 313 Quantum-chemistry and solid-state-physics simulations
DL_POLY Realistic ARCHER 63 General-purpose classical molecular-dynamics simulation
HPCC Synthetic =~ ARCHER 3 Benchmark collection for measuring the range of memory-access patterns
MNIST (MLP) Realistic Google TensorFlow 5 Training a deep MLP to recognize handwritten digits
CIFAR-10 (CNN) Realistic Google TensorFlow 5 Training a deep CNN to classify color images
simHH Realistic In-house 3 Extended Hodgkin-Huxley, biologically realistic, neural-model simulator

good indication of the quality of the trained network. Choosing
optimal MLP hyperparameters, such as the number of layers,
the type of activation functions and the learning rate, is a
subject of research, for which different solutions have been
proposed [11], but in many cases, remains a process of trial
and error. However, we expect a single, general-purpose MLP
to be robust enough to achieve performance prediction across
a wide range of HPC applications.

A. Oikonomos training mode

For each HPC application, Oikonomos silently monitors
multiple, user-initiated application runs, each with its own
unique set of input parameters and records tuples of the
form (application, parameters, cloud instance, execution time).
An assumption central to this work is that a sufficiently
large number of runs takes place for Oikonomos to learn
properly. This is usually the case in scientific or production
HPC contexts where a single or multiple users are mounting
HPC experiments via the same application for a prolonged
period of time. A secondary assumption is that the targeted
HPC application is implemented in such a way that it can be
optimally run in at least two different platforms. For modern
HPC applications, such an assumption is safe. Oikonomos
treats the HPC applications as black boxes, which allows it
to compare the behavior of different implementations of the
same HPC application.

For each application run, the application parameters along
with the various cloud-instance characteristics, such as the
number of vCPUs, the type of CPU, amount of RAM, and
information about the available GPU, comprise the Oikonomos
training data to be fed as input into the MLP during the
training phase. The MLP output consists of execution times,
one per application run. Training starts when a sufficient
amount of data for the creation of training, validation and
testing sets of the MLPs has been collected. The process is
illustrated in Figure 1.

B. Oikonomos prediction mode

After training the network to predict execution times,
the performance predictions can be used to calculate the
expected cost of running an application with a particular
set of parameter values and hardware configuration. After
all, cloud providers usually bill the use of instances per

Training data set normalization MLP
training
Assess
A . quality on

Validation data set scaling test

data

Test data set scaling
Fig. 1. Oikonomos training mode: The labelled dataset, which consists of

the application parameter values and cloud-instance hardware specifications,
combined with the measured execution time for each job, is divided into
training, validation, and test sets. The training set is normalized and used for
training. The validation set is scaled in the same way as the training set, and
used to prevent overfitting. The test set is used to assess the trained MLP
post-training.

time unit. In order to recommend an optimal instance type,
Oikonomos concatenates the specific parameter values with the
hardware configuration values of each of the instance types,
and predicts the execution time for each possible instance.
The cost predictor, then, calculates the predicted costs of
running this job on each of the instances by multiplying the
predicted time by the cost per second. In this way, Oikonomos
gives a recommendation for an optimal instance choice. The
prediction algorithm is summarized in Figure 2. If Oikonomos
is used for multiple applications, each application needs its
own trained MLP.

IV. IMPLEMENTATION

A. Applications and benchmarks

For evaluating the efficiency of Oikonomos, in this work we
employ a mix of synthetic and realistic HPC applications, as
shown in Table II. We selected five prominent benchmarks
(BENCHIO, GROMACS, CP2K, DL_POLY, HPCC) taken
from the ARCHER Hybrid Benchmark Suite, which was
designed to be representative of the workloads of ARCHER,
the UK National Supercomputing Service [12]. The five
benchmarks that were available to us represent a balanced
mix of both synthetic and realistic workloads. Apart from
these benchmarks, we selected three additional, real HPC
applications: simHH, MNIST (MLP), and CIFAR-10 (CNN).

application
execution
request

application

parameters
Cloud-
> instan
configuration of MLP predicted stance
: . L billing
instance type 1 inference execution time
>
configuration of MLP predicted CO?‘
instance type 2 inference execution time function :
° ° ° :
° ° ° H
[} (] [] I
N :
configuration of MLP predicted instance-type
instance type n inference execution time recommendation / !

Fig. 2. Oikonomos prediction mode: On each new application-run request,
the system takes as input the application-run parameter values, combines them
with the configuration details of all targeted instance types and with their
hyperscaler-provided usage costs, and outputs an instance recommendation to
the user. Depending on the cost function selected, Oikonomos will recommend
the fastest or cheapest instance to do the particular run on.

BENCHIO [13] is a synthetic parallel I/O benchmark, which
evaluates the write bandwidth to a shared file per processor.
The benchmark was designed by the Edinburgh Parallel Com-
puting Centre (EPCC). It performs each test ten times, and
evaluates the minimum, maximum, and average bandwidth
returned. The code is written in Fortran 90, and writes the array
in two ways: according to a ‘single file, single writer’ patterns,
and in a ‘single file, collective writer’ pattern. The application
writes in serial and parallel to three subdirectories. There are
no available GPU or FPGA implementations of BENCHIO,
but the number of MPI processes can be varied.

GROMACS [14] is a package for molecular-dynamics sim-
ulations, which is written in C/C++ with MPI and OpenMP
parallelism. The package is free software, and it is widely
used in scientific research: thousands of publications use
GROMACS every year. The application employs multi-level
parallelism, distributing computational work across different
cores on each domain. Application performance will differ
dependent on the hardware and the number of MPI-processes
used. The application has support for GPGPU (CUDA) and
Xeon Phi (KNL).

CP2K [15] is a quantum chemistry and solid-state physics
software package, that performs atomic simulations of several
kinds of systems. The package contains a large number of
computational methods and simulation approaches, combining
algorithms with good parallel scalability in order to exploit
HPC architectures. The package was written in Fortran with
MPI and OpenMP parallelism, and also supports CUDA, but
only for specific GPUs.

DL_POLY [16] is general-purpose classical molecular-

For every application :

TABLE III
HPC APPLICATIONS USED FOR THE OIKONOMOS EVALUATION, AND
THEIR PARAMETER RANGES

(A) BENCHIO (B) GROMACS

parameter range parameter range
MPI-procs 1-8 MPI-procs 1-8
Multiplier 1-10 Multiplier 1-10
(C) CP2K (D) DL_POLY
parameter number parameter number

No. of different 313
bench-tests

No. of different 63
bench-tests

(E) HPCC (F) simHH
parameter range parameter range
MPI-procs 4-8 time-steps 1 - 300,000
N 1000 - 25000 connectivity 02-10
NB 100 - 10000 neurons 20 - 20,000

(G) MNIST (MLP) (H) CIFAR-10 (CNN)

parameter range parameter range
epochs 1 - 1000 epochs 1 - 1000
Training 1 - 5000 Training 1 - 5000
batch size batch size

Test batch size 1 - 5000 Test batch size 1 - 5000
Layer 1 size 1 - 5000 Layer 1 size 1 - 5000
Layer 2 size 1 - 5000 Layer 2 size 1-4

dynamics simulation software. It has been developed since
1994 and has been described as the first public, general-
purpose molecular-dynamics package written specifically for
parallel computers. The application employs different paral-
lelization strategies in order to speed up the simulations. The
application was written in Fortran with MPI and OpenMP
parallelism and, like CP2K, supports CUDA.

HPCC [17] is a prominent collection of synthetic bench-
marks that measure the range of memory-access patterns with
MPI and OpenMP support. The HPCC benchmark consists
of seven individual benchmarks (HPL, DGEMM, STREAM,
PTRANS, RandomAccess, FFT, and Communications Band-
width and latency). There are no available GPU or FPGA
implementations of HPCC, but the number of MPI processes
can be varied.

Apart from the ARCHER benchmarks, we employed three
HPC applications. The first one is a versatile neurosimulator
called simHH and developed at the Erasmus Medical Center,
Rotterdam [18]. It can simulate a wide range of extended
Hodgkin-Huxley neural models, which is a family of highly
biologically plausible, conductance-based models. From a
computational perspective, such networks typically are non-
embarrassingly parallel workloads and their high simulation
detail calls for invoking basic solvers operating on short time
intervals.

Our second HPC application involves the training of an
MLP Deep Neural Network, consisting of two layers and
built with Google TensorFlow. We employed the publicly
scrutinized MNIST database [20]. It contains images of a
large number of handwritten digits and is often used to test
Al classification applications. MNIST is a standard dataset
in Google’s TensorFlow library. There are several training

hyperparameters that can be varied, and the time it takes to
run the training algorithm varies with those parameters.

For our third HPC application, we used the training of a
Convolutional Neural Network (CNN), also built with Tensor-
Flow. As a dataset, we used the CIFAR-10 database, which
consists of thousands of color images from ten classes. The
goal is to classify the images correctly. Like MNIST, the
CIFAR-10 dataset is a standard dataset in Google’s Tensor-
Flow library. As variable parameters, the number of convolu-
tional layers (1, 2, or 3), the size of the fully-connected layer,
the number epochs, and the test and training minibatch sizes
were chosen. These parameters influence the training time.

In our situation, the application parameters that we vary
in order to create the datasets for the applications are more
or less uniformly distributed. In a real-life scenario, this will
not be the case: users may choose some parameter-value
combinations more often than others. However, data biasing is
a well-studied problem in modern Al and various techniques
exist for dealing with the problem [19]. In our evaluation
of Oikonomos, we use uniform distributions directly since
debiasing techniques such as the above can be routinely
combined with Oikonomos in a real setting.

B. MLP-based resource recommendation

The prediction and recommendation algorithm was imple-
mented in PyTorch, an open-source, machine-learning frame-
work which allows for development and implementation of DL
models in Python. The datasets were divided into a training
set (70% of data), a validation set (15% of data), and a test
set (remaining 15%). The input parameters were normalized
so that each parameter in the training set was distributed with
¢ =0 and o = 1. The same was done for the output values,
which consist of a single value per sample: the execution time.

As for the MLP-based predictor, we expected that the
MLP depth, activation function and training batch size ought
to have a bearing in performance. We explored a range of
diverse MLP architectures. In this work, we chose to present
the performance of two specific ones, deep enough to learn
the complexity of realistic HPC workloads. The first MLP
architecture (MLP 1) consists of seven fully connected layers.
After the first four layers, the tanh activation function was
used. The subsequent two hidden layers are followed by ReLU
activation functions. The second MLP architecture (MLP 2)
consists of nine fully connected layers, the first five followed
by tanh activation functions, and the subsequent three layers
by ReLU activation functions. All but the last two layers were
followed by dropout layers, which improves learning.

Each MLP was trained with mini-batches of size 8. As
the loss function, several options were considered, such as
the L1 (Least Absolute Deviations) Loss, Mean Absolute
Percentage Error (MAPE), the Mean Squared Error (MSE),
and the Root Mean Squared Error (RMSE). The L1 error was
used, which was observed to work well for training the MLP.
The number of epochs was based on the validation loss: after
each epoch, the training and validation losses were calculated,
and the weights associated with the lowest validation loss were

retained. Because the data in the validation set is separate from
the data in the training set, this method prevents overfitting.

V. EVALUATION
A. Experimental setup

The instance types that were used for this work are shown
in Table IV. The data was generated using eight different types
of instances in Amazon EC2. Of the eight instance types,
two have a GPU available. The number of vCPUs ranges
from 8 to 48. The instances have been picked in order to
present diverse hardware options, but we also chose multiple
instances from the same family to test if Oikonomos can
discern the best among those, too. Four of the instances were
general-purpose instances (t2.2xlarge, m5a.4xlarge,
mba.8xlarge, and m5a.12xlarge), two were compute-
optimized (c5a.4xlarge and c5a.8xlarge), and two
were accelerated-computing instances (g3.4xlarge and
gd4dn.4xlarge). We collected the required data by running
the applications on these instances, with different parameter
values. The parameter ranges that were chosen for all the
applications are displayed in Table III.

After generating the datasets by running the applications
in the cloud with the relevant parameters and expanding the
dataset using our insights in the applications’ behaviors, the
data set was divided into training, validation, and test sets, as
discussed in Section III. The training data was standardized,
with its mean set to 0 and its standard deviation set to 1, as
is commonly done for training data for MLPs. The validation
and test sets were scaled using the same parameters as the
training set.

The instance type was also included as an input parameter
to Oikonomos, employing one-hot encoding. The same was
done for hardware types, such as a specific GPU, being present
in a given instance or not. Also quantifiable hardware aspects,
such as the number of vCPUs, GPUs, FPGAs and the memory
available were presented as input parameters. In this way, the
MLP is able to train for multiple instance types. The MLP
was trained, and converged rapidly from the first few epochs
on. The training process was stopped when the validation loss
stopped decreasing, to prevent overfitting.

B. Results

The evaluation of the trained MLP for each application was
done on the test sets. This gives a good indication as to how
well the network performs when a new job request comes in.
We present the prediction error as the Mean Percentage Error
(MPE) and the Mean Absolute Percentage Error (MAPE), in
order to show the error in proportion to the actual execution
time.

However, since the main purpose of Oikonomos is to
accurately choose the best instance type (either the fastest
or the most cost-efficient option), a better way to assess the
quality of the predictions is to compare the resource selection
of Oikonomos to an optimal policy and a random policy.

The data from [21] were used to determine the cost of
Linux, On-Demand instances in Amazon. These types of

AMAZON EC2 INSTANCE TYPES USED FOR THE OIKONOMOS EVALUATION. TYPES OF HIGH DIVERSITY, WITH VARIOUS NUMBERS OF CPU CORES AND

TABLE IV

DIFFERENT TYPES OF GPUS, AS WELL AS SIMILAR TYPES FROM THE SAME FAMILY, HAVE BEEN SELECTED ON PURPOSE.

Instance type CPU type vCPU no. Memory (GiB) GPU type GPU mem. (GiB)

t2.2xlarge Intel Xeon Family @ 3.3 GHz 8 32 - -

cba.4xlarge AMD EPYC 7R32 @ 2.8 GHz 16 32 - -

mba.4xlarge AMD EPYC 7571 @ 2.5 GHz 16 64 - -

mb5a.8xlarge AMD EPYC 7571 @ 2.5 GHz 32 128 - -

c5a.8xlarge AMD EPYC 7R32 @ 2.8 GHz 32 64 - -

m5a.1l2xlarge AMD EPYC 7571 @ 2.5 GHz 48 192 - -

g3.4xlarge Intel Xeon ES5-2686 v4 @ 2.3 GHz 16 122 Tesla M60 8.0

g4dn.4xlarge Intel Xeon Family @ 2.5 GHz 16 64 Tesla T4 16.0

TABLE V
OIKONOMOS EVALUATION (MLP 1/ MLP 2)
BENCHIO GROMACS CP2K DL_POLY

Mean Percentage Error (MPE) 2.35%/ 1.06% 0.67%/ 1.79% 0.01%/ -0.11% -0.03% / -0.02%
Mean Absolute Percentage Error (MAPE) 4.50%/ 4.68% 232% /1 3.28% 1.94% 1 1.74% 0.52%/ 0.53%
Time regret % 3.99%/ 3.88% 1.85%/ 4.10% 0.00% / 0.00% 0.01%/ 0.02%
Cost regret % 5.36%/ 10.53% 0.00% / 0.00% 0.01%/ 0.01% 0.00% / 0.00%
Time/cost regret of random policy 35.00% / 152.64% 50.76% / 280.45% 52.80% / 124.12% 20.67% / 150.13%

Correct instance type chosen (time)
Correct instance type chosen (cost)

60.30% / 52.10%
96.80% / 85.30%

83.10% / 71.70%
100.00% / 100.00%

99.90% /' 99.90%
99.90% /' 99.90%

99.40% / 99.10%
100.00% / 100.00%

HPCC simHH MNIST CIFAR-10
Mean Percentage Error (MPE) 0.51%/ 1.96% 3.68%/ 0.61% 16.83% / 14.81% -2.69% / 7.46%
Mean Absolute Percentage Error (MAPE) 4.16% / 5.40% 12.84% / 13.23% 19.63% / 16.67% 7.93% / 10.94%
Time regret % 0.65%/ 0.27% 196.76% / 111.80% 6.00% / 0.04% 3.02%/ 0.26%
Cost regret % 036%/ 0.38% 196.09% / 63.14% 6.45% / 4.64% 2.24% / 0.84%
Time/cost regret of random policy 72.05% / 403.08% 744.95% /389.90% 284.63% /537.12% 1000.45% / 666.95%

39.10% / 73.70%
98.90% / 98.70%

Correct instance type chosen (time)
Correct instance type chosen (cost)

99.46% / 98.65%
98.92% / 95.95%

98.86% / 99.97%
94.28% / 94.89%

2291% 1 65.74%
2421% 1 73.37%

instances are billed per second, from the time of launch
until their termination. For the purpose of this research, it
was assumed that each instance is launched for one single
application run, after which it is immediately terminated.

Table V summarizes the results for all eight applications.
Both the Mean Percentage Error and the Mean Absolute
Percentage Error per application are shown. We also present
the regret (the difference between the Oikonomos policy and
an optimal policy) as a percentage of the optimal policy.
This shows how much more time-consuming or costly the
Oikonomos policy is compared to an optimal policy. For
comparison, we also added the regret percentages for a random
policy. Lastly, we assess in which percentage of cases the
choice of the Oikonomos policy matches those of the best
policy.

For all applications with either of the two MLPs,
Oikonomos performs much better than a random policy. It can
also be seen that the errors for the five benchmarking appli-
cations are usually lower than those of the HPC applications.
This is expected, since for these applications, the relationship
between parameters and execution time is more complex than
for the ARCHER applications.

In general, there is little difference between the results for
the two MLP architectures. For all eight applications and each
MLP, the Oikonomos policy far outperforms a random policy.
The choice of MLP matters in some cases: for HPCC, simHH,

and MNIST, MLP 2 performs much better than MLP 1.
Interestingly, higher error percentages do not always correlate
with higher regret: selection of the correct instance is more
important than an accurate prediction.

The graphs in Figure 3A show a visualization of the
cost estimations of the Oikonomos system for the MNIST
MLP training with particular parameter configurations. The
figures show that different parameter configurations can lead
to different cost-optimal configurations. This confirms what
Smaragdos et al. [10] have described in their work: the
optimal hardware configuration of an HPC application strongly
depends on its parameter values.

Figure 3B shows confusion matrices for the optimal instance
choices for the MNIST MLP training, both regarding time
and cost, for a test set of jobs that were executed on all the
instances. The diagonal shows the count of jobs where the
option recommended by Oikonomos corresponds to the actual
best option. In the test set, the fastest option was always the
g4dn.4xlarge instance type. However, since this instance
type has also the highest costs per hour, it is not always the
cheapest option. Oikonomos was able to identify this dilemma
and recommend the correct instance type in most cases.

VI. DISCUSSION

The experimental results reveal that Oikonomos can produce
accurate resource recommendations for several applications:

Predicted costs

— c5a.12xlarge
c5a.4xlarge
—— c5a.8xlarge |
—— g3.4xlarge
35 —— gddn.4xlarge
m5a.4xlarge
msa.8xlarge |
t2.2xlarge

Predicted execution times
T T T 45

—— c5a.12xlarge
c5a.4xlarge
—— c5a.8xlarge |
—— g3.4xlarge
—— g4dn.4xlarge
m5a.dxlarge
m5a.8xlarge | 3.0
t2.2xlarge

20000

15000

10000

Execution Time [sec]

,><——{

5000 ==

AN
R\
\

0.5 1+

500 1000 1500 2000

Layer 1 size

2500 3000 3500 500 1000 1500 2000

Layer 1 size

2500 3000 3500

B

Confusion matrix (fastest option) Confusion matrix (cheapest option)

c5a.12xlarge csa.12xlarge

c5a.4xlarge c5a.4xlarge

c5a.8xlarge

c5a.8xlarge

g3.4xlarge g3.4xlarge

g4dn.axlarge PEN q4dn.axlarge
mb5a.4xlarge m5a.dxlarge
mb5a.8xlarge m5a.8xlarge

t2.2xlarge t2.2xlarge

t2.2xlarge
g3.4xlarge

g3.4xlarge
c5a.8xlarge

cSa.4xlarge
c5a.8xlarge
m5a.4xlarge
cSa.4xlarge
mSa.4xlarge
msa.8xlarge

csa.12xlarge
g4dn.4xlarge
m5a.8xlarge
cSa.12xlarge
g4dn.4xlarge

Fig. 3. A: Cost and execution time estimations for running the MNIST MLP training, as estimated by MLP 1. To allow for a two-dimensional plot, scaling
of only a single parameter for two distinct values of a second parameter is shown here. Based on the plots, for each combination of parameter values, the
cheapest instance type can be found. B: Confusion matrices for the fastest and cheapest option for MNIST MLP training. Recommendations shown on the
y-axis, true labels shown on the x-axis. Numbers are percentages of the test set. Most estimations are on fields along the diagonal, which indicates that

Oikonomos chooses the correct instance in most cases.

five benchmark applications and three HPC applications. It
was possible to retrain the MLP for very different applications
without the need to modify the MLP architecture. All in all,
we showed that it is possible to create a recommender system
for HPC applications in cloud environments that is portable to
different applications and types of cloud instances.

Nevertheless, Oikonomos in its current form does have some
potential limitations. It uses a lot of training data to train
its MLP. In our experiments, we were able to generate that
data, but in a real-life situation, where execution-time data
from actual user runs is gathered, it might not be available
at first. However, as an HPC application is used for a longer
period of time by a significant number of users, the MLP
can be retrained periodically so that its quality gradually
improves. The reliance on a large data volume is a limitation.
Further research is needed to determine what amount of data
is sufficient for accurate instance-type recommendation.

The MLP was trained with data following a uniform distri-
bution over all parameters. In situations where training data
is derived from user runs, this will not be the case. There, it
might be necessary to implement debiasing techniques, such as
oversampling or weighting. However, since this is a common
issue with datasets that are used for training DL networks,
multiple techniques exist that could address this.

Only 8 instance types were used for each of the seven appli-
cations to generate the input data. At this point, Amazon EC2
offers 567 different types of instances, and even though only
a subset of those will be suitable for a particular application,
further research is needed to see how Oikonomos would work
on the full set of available instance types.

We compared the performance of Oikonomos to a random
and the optimal policy, but we were unable to compare
Oikonomos’ performance to earlier work. Unfortunately, in
contrast to other fields, there are currently no standardized
benchmarks for cloud-resource recommendation. Because of
this, direct quantitative comparison between recommendation
systems is currently infeasible. The eight applications used in
this paper could be a starting point for the development of
such a benchmark set.

Even though we carefully selected our benchmark applica-
tions and instance types to collect our data, Figure 3 illustrates
that for most jobs, the best instance type (in terms of speed or
cost) is still one of two options, or overwhelmingly one and
the same instance type. The effect described by Smaragdos et
al. is relatively minor for our applications, instance types, and
parameter ranges. This is not a feature of Oikonomos (which
also performs well in cases where there is one overall best
option), but a feature of the benchmark set. This is another
reason why a standardized set of cloud HPC benchmark
applications is needed: a set of applications that truly behave
differently on different hardware type would be better able to
show the flexibility of Oikonomos, or any other cloud resource
recommendation system.

In this work, we assumed that the instances were already
running. Since it takes time to launch an instance and install
the necessary applications on it, shutting down an instance
after launch is not optimal if simulations are requested fre-
quently. However, keeping an instance running in anticipation
of new jobs is also costly. Developing an algorithm that
determines the cost- or time-effectiveness of refraining from
terminating an instance post-execution holds promise but,
since it requires additional data about the frequency patterns
of simulation requests, it is outside the scope of this work.

While the MLP architectures were designed regardless of
the applications, they performed exceptionally well for all
the benchmarking tools and HPC applications. This provides
evidence that a well-designed, general-purpose MLP could
be applicable for any number of HPC applications. However,
further research is needed to trace the lowest amount of data
needed for the predictor to work correctly.

VII. CONCLUSIONS

Modern clouds are powerful platforms for executing HPC
applications. However, the growing number of heterogeneous
instance types and hardware configurations makes it crucial
for users to gain insight in optimal choices. This work con-
firmed earlier research that, for HPC applications, the optimal
choice of hardware for an application job can depend on

the parameter values of that job. To tackle this challenge,
we proposed Oikonomos, an optimal resource-recommender
system. Oikonomos uses a general-purpose MLP for predicting
the execution time of an HPC application with different
input parameters and on different cloud-instance types. Based
on that, it recommends the option that minimizes cost or
execution time per run. We tested Oikonomos with two
different MLP architectures, on three HPC applications — two
TensorFlow kernels and a brain simulator — as well as a mix of
five synthetic and realistic ARCHER benchmarks, on various
different instance types on Amazon EC2. Evaluation results
showed that the Oikonomos policy led to very low regret rates
compared to a random policy, approaching an optimal policy.
For seven out of the eight applications, the optimal instance
type was chosen in more than 90% of cases, scoring a MAPE
below 20% for all applications.

REFERENCES

[1]1 S. Venkataraman, et al., “Ernest: Efficient performance prediction for
large-scale advanced analytics,” in 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16), 2016.

[2] N. J. Yadwadkar, et al., ”Selecting the best VM across multiple public
clouds: A data-driven performance modeling approach,” in Proceedings
of the 2017 Symposium on Cloud Computing, 2017.

[3] R. Chard, K. Chard, R. Wolski, R. Madduri, B. Ng, K. Bubendorfer,
and I. Foster, ”Cost-aware cloud profiling, prediction, and provisioning
as a service,” IEEE Cloud Computing, vol. 4, no. 4, pp. 48-59, 2017.

[4] O. Alipourfard, et al., "CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics,” in 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17),
2017.

[5] C.-J. Hsu, et al., ”Scout: An Experienced Guide to Find the Best Cloud
Configuration,” arXiv preprint arXiv:1803.01296, 2018.

[6] C.-J. Hsu, et al., ”Arrow: Low-level augmented bayesian optimization
for finding the best cloud vm,” in 2018 IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE, 2018.

[7] C.-J. Hsu, et al., "Micky: A cheaper alternative for selecting cloud
instances,” in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), IEEE, 2018.

[8] F. Samreen, G. Blair, and Y. Elkhatib, “Transferable Knowledge for
Low-cost Decision Making in Cloud Environments,” IEEE Transactions
on Cloud Computing, 2020.

[9] D. Samuel, et al., ”A2Cloud-RF: A random forest based statistical
framework to guide resource selection for high-performance scientific
computing on the cloud,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 24, 2020.

[10] G. Smaragdos, et al., "BrainFrame: a node-level heterogeneous accel-
erator platform for neuron simulations,” Journal of Neural Engineering,
vol. 14, no. 6, 2017.

[11] M. Ettaouil and Y. Ghanou, “Neural architectures optimization and
Genetic algorithms,” WSEAS Transactions On Computer Research, vol.
8, no. 3, pp. 526-537, 2009.

[12] A. Turner, "UK National HPC Benchmarks - ARCHER,” https:
/Iwww.archer.ac.uk/documentation/white- papers/benchmarks/UK, 2016,
accessed 2022-08-17.

[13] D. Henty, et al., "Performance of Parallel IO on ARCHER,” 2015.

[14] M. James, et al., "GROMACS: High performance molecular simula-
tions through multi-level parallelism from laptops to supercomputers,”
SoftwareX, vol. 1-2, pp. 19-25, 2015.

[15] T. D. Kiihne, et al., "CP2K: An electronic structure and molecular
dynamics software package - Quickstep: Efficient and accurate electronic
structure calculations,” The Journal of Chemical Physics, vol. 152, no.
19, 2020.

[16] W. Smith and I. Todorov, ”A short description of DL._POLY,” Molecular
Simulation, vol. 32, no. 12-13, pp. 935-943, 2006.

[17] P.Luszczek, et al., “Introduction to the HPC challenge benchmark suite,”
Technical report, Lawrence Berkeley National Lab (LBNL), Berkeley,
CA (United States), 2005.

[18] M. Engelen, "Scalable GPU Acceleration for Complex Brain Simula-
tions,” MSc thesis, Delft University of Technology, 2021. Available at:
http://resolver.tudelft.nl/uuid:b79bbfa7-0c57-4949-b974-83a7d9ee6b39

[19] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 559-563, 2017.

[20] Image classification, MNIST digits, http:/neupy.com/2016/11/12/mnist_
classification.html, accessed 14-12-2021.

[21] Easy Amazon EC2 Instance Comparison, https://EC2Instances.info, ac-
cessed 14-12-2021.

