
Abstract—Automated whisker tracking is important for 
researching active touch in rodents. Earlier efforts to detect 
whiskers and represent them in a small set of parameters were 
either not accurate enough to enable tracking over time, or 
computationally expensive. In this article we propose an 
algorithm to cluster whisker centerline points, detected through 
a curvilinear structure algorithm, using the shape of smaller 
clusters to form bigger clusters of centerline points. After that, 
a least-squares approach is used to define each whisker by a set 
of four parameters. We implemented the algorithm in 
MATLAB in a parallelized fashion, and found that the 
processing time per frame is reasonable in MATLAB, and is 
likely to be short when ported to a lower-level language. When 
tested on a  33,634-frame segment, 89.2% of the whiskers could 
be represented in an abstract fashion by four parameters with a 
mean-squares fitting error of lower than 10 pixels, and visual 
inspection shows that crossing whiskers are detected and 
parameterized in an accurate way. 

Index Terms— Biology computing, Clustering methods, High 
performance computing, Image processing, MATLAB, Parallel 
algorithms, Parallel processing  

I. INTRODUCTION

 NE of the most important ways in which rodents learn 
about their environment is by active touch: they bring 

their whiskers in contact with nearby objects. The intricate 
whisker system of mice is of special interest to scientists: 
these animals usually live in dark environments and are 
heavily dependent on active touch. The movement of the 
whiskers in response to stimuli can give a lot of information 
about the way these animals learn from external stimuli, and 
the connection between brain activity and whisker 
movement. For instance, the method of tracking whisker 
movement in top-level videos of a mouse has been used to 
establish that a modifiable, reflexive whisker protection can 
be evoked by touch [6]. 

 At the Erasmus Medical Center in Rotterdam (The 
Netherlands), experiments are conducted with head-fixed 
mice. The whiskers are filmed with a top-view, high-speed 
camera, recording at frequencies up to 1000 Hz; an example 
of a frame from such a video is shown in Figure 3A. Detecting 
individual whiskers on these videos is difficult: they spread, 
cross, align, and hide behind each other. Furthermore, the 
camera generates large amounts of frames: even a recording 
time of a few minutes yields hundreds of thousands of frames, 
which makes it unfeasible to track the whisker movements 

manually. The use of software to perform this task is therefore 
a necessity. 

In this paper, we present an algorithm that avoids the need 
to try all combinations of whisker points, by clustering 
iteratively. Using a centerline detection technique that can 
detect whiskers with sub-pixel accuracy, we were able to 
combine whisker points into small clusters, iteratively 
merging those clusters based on their shape, eventually 
defining every whisker as a separate cluster, which can then 
be represented in an abstract way by parameter fitting. 

First, we will summarize the technique that allowed us to 
detect the centerline of whiskers with sub-pixel precision. We 
present the iterative clustering technique, and show how the 
clusters can be used to describe the whiskers in an abstract 
way. Then, we will show the performance and complexity of 
a MATLAB executable implementation of this algorithm on 
actual whisker frames.  

II. RELATED WORK

When it comes to whisker detection and tracking, a couple 
of efforts exist. The most comprehensive one so far has been 
the BIOTACT Whisker Tracking Tool (BWTT), a MATLAB 
application based on the ViSA algorithm [5]. The authors 
opted to only detect whisker points in a narrow band around 
the snout. The algorithm divides pixels in three groups based 
on their distance to the snout; and tries to connect all the 
detected pixels from the ‘inner’ group to those of the ‘outer’ 
group, selecting the most feasible options for constructing 
whisker shafts. This method is computationally expensive, as 
a large number of combinations of pixels needs to be 
attempted. Furthermore, the choice to detect only short, linear 
whisker shafts makes individual whiskers almost impossible 
to distinguish in video fragments.  

Clack et al. used a local-minima algorithm to detect 
whisker pixels, and a parameterized line detector to find the 
sub-pixel position of the whisker points. When whiskers 
cross, their method leaves a gap, which is filled up by 
interpolation [1]. When we tested their method on our videos, 
we found that the algorithm has difficulties when trying to 
accurately describe crossing whiskers; they are often detected 
as two separate curves, which leads to tracking errors in the 
video. 

Knutsen et al. use a convolution-based algorithm to track 
rat whiskers by manually locating whiskers on the first frame, 
and then fitting a piecewise polynomial function. This 
worked well for trimmed rats, but required intervention for 
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untrimmed rats. As for mice, the algorithm was only validated 
in untrimmed animals [4]. 

III. PROPOSED ALGORITHM 
Whiskers on top-view images can be described as 

curvilinear structures: their width is negligible compared to 
their length. The ViSA algorithm uses a local intensity 
difference detection algorithm to detect which pixels are part 
of whiskers. Whisker shafts are then detected by a connecting 
pixels from the outside of the band to those on the inside of 
the band. The detection algorithm, however, only allows for 
pixel accuracy. A better way to trace the whiskers is to 
approach the shape of the section of a whisker by a second-
order Taylor polynomial, and finding its vertex analytically, 
as was done in [7]. In this way, it is possible to use differences 
in intensity between pixels to estimate the exact position of 
the centerline, rather than just determining whether a pixel is 
part of the whisker or not. When we applied this technique to 
our preprocessed whisker images, we found that the 
centerlines of the whiskers were detected with barely any 
noise, as can be seen in Figure 2. 

The centerline detection algorithm detects centerline 
points, but not whiskers. Due to differences in intensity 
among whiskers on the frames and the limited resolution of 
the videos, it was not possible to find a configuration for the 
curvilinear structure detection algorithm that would produce 
fully continuous centerlines. Furthermore, when whiskers 
cross, the lower whisker is bound to being partially obscured, 
which leads to an interrupted centerline. 

The clustering and abstraction algorithm we propose 
makes use of the fact that, as clusters grow, they define the 
local shape of the whisker. This information can then be used 
to merge collinear clusters, and eventually even identify 
partially obscured whiskers. 

A. Local clustering 
The first step consists of locally clustering individual 

centerline points. The main information we have here is the 
position of the whiskers points on the image. Furthermore, 
the curvilinear structure detection algorithm gives us some 
information about the local direction of the structure at every 
point. 

We considered two options for local clustering: the 
DBSCAN algorithm [3], which clusters points based on local 
distance (if the distance between two points is smaller than a 
parameter , the points are clustered together). We also 
considered the algorithm described in the Steger paper, where 
centerline points in neighboring pixels are clustered using a 

linear combination of distance and difference in local 
direction as a guideline. 

Theoretically, using both location and local direction 
information would lead to more accurate clustering than 
using just location information. In practice, we found that the 
difference in performance for our application between the 
two algorithms is minor, but it is essential that parameters be 
well-chosen to prevent incorrect clustering. Because the 
centerlines are interrupted, the number of clusters will still be 
higher than the number of whiskers after the local clustering 
step, as can be seen in Figure 3B. 

B. Collinear cluster merging 
Once smaller groups of centerline points are formed, it 

becomes possible to further reduce the number of clusters by 
merging those that line up (since those are likely to be part of 
the same whisker). For clusters of a certain size, the direction 
of a cluster of a certain shape can be determined with help of 
the covariance matrix of the x- and y-coordinates of the points 
in the cluster: the eigenvector corresponding to the absolute 
largest eigenvalue of the covariance matrix corresponds to the 
direction of the cluster. This eigenvector can be used to 
construct a rotation matrix to align the cluster along the x-
axis. 

Since whiskers are curved structures, and even the clusters 
obtained with local clustering can be long and curved, and the 
average direction of the cluster can differ from the direction 
at the tips of the cluster. However, by aligning the cluster 
along the x-axis, it becomes easy to extract n points from 
either end of the cluster, in order to create two sub-clusters 
(the top and the bottom ends). The covariance matrix can 
again be used to determine the direction of the cluster at the 
tips. 

Knowing the direction and the position of the tips of the 
clusters, it becomes possible to determine the Euclidean 
distance between the tops and bottoms of different clusters, 
and to determine the difference in direction between tops and 
bottoms. A linear combination of these two parameters can 
be used to determine how likely it is that two clusters are part 
of the same whisker (on the condition that the position of the 
bottom of one cluster relative to the snout is higher than the 
tip of the other one). In this way, we can assess the tops of all 
clusters, determine which of the other clusters is collinear 
(and this part of the same whisker), and merge those clusters. 
If necessary, this procedure can be repeated, though usually 

Fig. 1.  ViSA algorithm for whisker extraction. Whisker pixels are extracted
from a narrow band around the snout. The detected pixels are divided into
three groups, and linearized whisker shafts are detected by drawing lines
between whisker points from the ‘inner’ group to those of the ‘outer’ group.
Image taken from [5]. 
  

 
Fig. 2.  Whisker centerlines detected using the Steger algorithm. It is clear 
that there is very little noise. When we zoom in to a place where two whiskers 
cross, we find that the centerline points are well-aligned, even though the 
centerline is not fully continuous. 
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one iteration is enough. Eventually, we obtain one separate 
cluster of centerline points for each whisker, as in Figure 3C. 

C. Parameterization 
Once each whisker is represented by a single cluster of 

centerline points, the whisker needs to be described by a 
limited number of parameters. In order to follow whiskers 
over multiple frames, it is important that these parameters 
fulfil the so-called compactness hypothesis: whiskers that are 
very different should have very different parameterizations, 
and whiskers that are similar (or a single whisker on two 
subsequent video frames) should have similar parameters. 

The videos that are used at the Erasmus MC contain free-
moving whiskers that do not touch objects. The shape of these 
whiskers can be described well by a second-order 
polynomial. Furthermore, the length of a whisker is 
important, as well as its angle and position relative to the 
snout (mice are able to shift the pivot point around which 
whiskers rotate). We can thus describe a single whisker with 
a set of four parameters: the length L, the position  on a line 
along to the snout, the angle  relative to that line, and the 
bending parameter b, which defines the deviation d=bx2 from 
an axis x, defined by  and . The parameters can be fit to the 
cluster of centerline points by means of nonlinear regression, 
using least-squares estimation. Figure 3D visualizes the 
parameterized whiskers, and it can be seen that they closely 
resemble the detected clusters of centerline points shown in 
Figure 3C.  

IV. IMPLEMENTATION AND PERFORMANCE 
We implemented the whisker detection algorithm in 

MATLAB. The preprocessing step, consisting of standard 
image processing procedures (such as gamma correction) and 
removal of the background and animal silhouette, were 
adopted from BWTT. The centerline detection algorithm can 
be performed in parallel per pixel and was therefore suitable 
for processing on a GPU. In MATLAB, this can be done by 
casting the image as a gpuArray, which moves it to GPU 
memory. Per-pixel processing can then be done using the 
arrayfun function. 

The collinear cluster merging algorithm was implemented 

in MATLAB and accelerated by data-parallelizing the 
assessment of each cluster per iteration, by using a parallel 
for-loop (parfor). Furthermore, the m-code script was 
compiled into a MATLAB executable (MEX) file to speed up 
execution. The parameterization algorithm was not compiled, 
as the built-in nonlinear regression function of MATLAB 
could not be embedded into a separate MEX file. The 
collinear cluster merging step is performed a maximum 
number of three times, but stops as soon as there are no 
collinear clusters left. 

The algorithm was run on a computer with an AMD Ryzen 
7 1800X processor @ 3.6 GHz, with 32 GB RAM and a 
GeForce GTX 1080 Ti GPU, running Windows 10 Enterprise 
and MATLAB R2018b. We used a video fragment of 33,634 
frames. The video had an original resolution of 640x480, and 
was upscaled by a factor of 2 as part of the preprocessing step. 
The video, of which one of the frames is visible in Figure 3A, 
contains a challenging whisker situation: there are multiple 
crossing and overlapping whiskers. There is also a long hair, 
which crosses multiple whiskers. 

The parallelizability per step, the execution time per frame, 
and the average number of clusters before processing are 
shown in Table I. The total execution time for clustering and 
parameterization is 247.4 ms. 
Porting the MATLAB code to a low-level programming 
language or a different architecture will lead to a further 
speedup; also, the steps can be implemented as a pipeline, to 
decrease the processing time per frame. 

The quality of the algorithm was tested on two criteria: 
visual quality and execution time. Execution time was 

measured in MATLAB using 
the tic and toc functions. 
Visual quality was measured 
by the squared-error of the 
parametrization fit: if the 
error is low, that shows that 
the cluster is likely to 
accurately represent a 
whisker; a high error 
indicates either incorrect 
clustering, or a whisker 
shape that cannot accurately 
be represented by our 
bending parameter b. We 
also used visual inspection to 
see whether the 
reconstructed image of 
whiskers accurately 

Fig. 3. Frame from a whisker video. (A) shows the original frame. (B) shows 
the frame after local clustering, and (C) shows it after collinear cluster
merging. Different colors denote different clusters. (D) shows a
reconstruction of the whiskers based on a set of four parameters per whisker.
The last whisker was dropped before parameterization based on its length. 
  

TABLE I 
ALGORITHM STEPS 

Step name Parallelizability 

Execution 
time per 
frame 

Avg. nr. of 
clusters 
before 

processing 
Local clustering Per pixel  128.3 ms 5,323 
Collinear cluster 
merging 

Per cluster 46.83 ms 73.73 

Parameterization Per whisker 72.26 ms 16.95 
 
Execution time results per step of the process, over a 33634-frame video 
fragment. Also the parallelizability and the number of clusters before 
processing is shown (the parameterization step does not reduce the number 
of clusters unless a minimum length is given as a parameter). 

TABLE II 
ALGORITHM STEPS 

Whisker MSE of fit 
1 0.0239 
2 0.1238 
3 1.0280 
4 6.0417 
5 3.6123 
6 0.0274 
7 0.0316 
8 0.4537 
9 0.0024 

10 3.1131 
11 107.32 
12 0.0017 
13 0.0739 
14 0.3947 

 
 
MSE of each of the fitted whiskers 
in Figure 3. The whiskers are 
numbered by their starting point 
from left to right. 
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represents the whisker profile that is visible on the original 
frames.  

Figure 3 shows the results of the different clustering steps, 
with the original frame in light grayscale shades on the 
background. The figure shows that the centerlines of the 
whiskers are detected accurately. The different colors denote 
different clusters. The long hair is detected as a whisker; this 
not surprising, since it is a long and moving object, and it is 
not problematic; it can easily be filtered out afterwards. 
Future work includes the design and implementation of an 
algorithm that can track detected whiskers over longer video 
segments. 

Figure 3C shows that the algorithm is able to cluster 
crossing whiskers correctly. Figure 3D shows that four 
parameters can accurately represent the original whiskers. 
There are a few differences: the tips of some of the whiskers 
on the right are too faint to be detected by the algorithm, 
which is why their reconstructions are shorter than the 
originals. 

Table II shows the MSE that was calculated after fitting 
parameters to each of the whiskers in Figure 3. Looking 
closely at Figure 3D, it can be seen that the whiskers with a 
high MSE do indeed fit the centerline shape a bit less well, 
but even whisker 11 (with a MSE of more than 100) fits the 
shape of the whisker quite accurately. As for the whole video 
segment, Figure 4 shows that a large majority of the whiskers 
has a MSE that is low enough to be considered an accurate 
fit. This shows that the algorithm behaves well over longer 
segments, too. 

V. CONCLUSION 
We designed a three-step algorithm for the detection and 

parameterization of whiskers in top-view high-speed videos 
of free-moving whiskers. The algorithm builds on a 
curvilinear structure centerline detection algorithm, and 
makes use of the fact that the direction of a cluster can be 
determined through the covariance matrix of the coordinates 
of its members. By determining the direction and position of 
the tops and bottoms of the clusters, it is possible to determine 
which of the clusters are collinear, which means that the 
clusters are part of the same whisker. In this way, it is possible 
to separate the centerline points of different whiskers and 
make sure that each whisker has its own cluster, even when 

whiskers are partially obscured. 
The whiskers can be represented in an abstract fashion by 

four parameters that represent physical properties: length, 
bending, angle and position. When we reconstruct the 
original image, we see that these parameters can be used to 
reconstruct the original whisker accurately. We tested the 
algorithm on a challenging whisker fragment and found that 
it was able to accurately describe crossing whiskers. 

The algorithm performed well in MATLAB, with the total 
processing time per frame of 247.4 ms. Since the algorithm is 
highly parallelizable and the different processing steps can be 
implemented as a pipeline, an implementation in a lower-
level language will likely reduce the processing time even 
further, which makes it useful for processing high amounts of 
frames from a high-speed camera. 

The whisker detection algorithm presented in this paper 
can be implemented in a larger whisker-tracking software 
package, which tracks individual whiskers from beginning to 
end in longer video segments. This would make it possible to 
study the movements of individual whiskers, instead of the 
simple average of the detected whiskers, which would make 
it possible to study the intact whisker system of mice in 
unprecedented detail. 
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Fig. 4. Fraction of whiskers with an MSE lower than x for a video
fragment of 33634 frames. 89.2% of whisker parameterizations has a
MSE of lower than 10 pixels. 
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