
Abstract—Automated whisker tracking is important for
researching active touch in rodents. Earlier efforts to detect
whiskers and represent them in a small set of parameters were
either not accurate enough to enable tracking over time, or
computationally expensive. In this article we propose an
algorithm to cluster whisker centerline points, detected through
a curvilinear structure algorithm, using the shape of smaller
clusters to form bigger clusters of centerline points. After that,
a least-squares approach is used to define each whisker by a set
of four parameters. We implemented the algorithm in
MATLAB in a parallelized fashion, and found that the
processing time per frame is reasonable in MATLAB, and is
likely to be short when ported to a lower-level language. When
tested on a 33,634-frame segment, 89.2% of the whiskers could
be represented in an abstract fashion by four parameters with a
mean-squares fitting error of lower than 10 pixels, and visual
inspection shows that crossing whiskers are detected and
parameterized in an accurate way.

Index Terms— Biology computing, Clustering methods, High
performance computing, Image processing, MATLAB, Parallel
algorithms, Parallel processing

I. INTRODUCTION

 NE of the most important ways in which rodents learn
about their environment is by active touch: they bring

their whiskers in contact with nearby objects. The intricate
whisker system of mice is of special interest to scientists:
these animals usually live in dark environments and are
heavily dependent on active touch. The movement of the
whiskers in response to stimuli can give a lot of information
about the way these animals learn from external stimuli, and
the connection between brain activity and whisker
movement. For instance, the method of tracking whisker
movement in top-level videos of a mouse has been used to
establish that a modifiable, reflexive whisker protection can
be evoked by touch [6].

 At the Erasmus Medical Center in Rotterdam (The
Netherlands), experiments are conducted with head-fixed
mice. The whiskers are filmed with a top-view, high-speed
camera, recording at frequencies up to 1000 Hz; an example
of a frame from such a video is shown in Figure 3A. Detecting
individual whiskers on these videos is difficult: they spread,
cross, align, and hide behind each other. Furthermore, the
camera generates large amounts of frames: even a recording
time of a few minutes yields hundreds of thousands of frames,
which makes it unfeasible to track the whisker movements

manually. The use of software to perform this task is therefore
a necessity.

In this paper, we present an algorithm that avoids the need
to try all combinations of whisker points, by clustering
iteratively. Using a centerline detection technique that can
detect whiskers with sub-pixel accuracy, we were able to
combine whisker points into small clusters, iteratively
merging those clusters based on their shape, eventually
defining every whisker as a separate cluster, which can then
be represented in an abstract way by parameter fitting.

First, we will summarize the technique that allowed us to
detect the centerline of whiskers with sub-pixel precision. We
present the iterative clustering technique, and show how the
clusters can be used to describe the whiskers in an abstract
way. Then, we will show the performance and complexity of
a MATLAB executable implementation of this algorithm on
actual whisker frames.

II. RELATED WORK

When it comes to whisker detection and tracking, a couple
of efforts exist. The most comprehensive one so far has been
the BIOTACT Whisker Tracking Tool (BWTT), a MATLAB
application based on the ViSA algorithm [5]. The authors
opted to only detect whisker points in a narrow band around
the snout. The algorithm divides pixels in three groups based
on their distance to the snout; and tries to connect all the
detected pixels from the ‘inner’ group to those of the ‘outer’
group, selecting the most feasible options for constructing
whisker shafts. This method is computationally expensive, as
a large number of combinations of pixels needs to be
attempted. Furthermore, the choice to detect only short, linear
whisker shafts makes individual whiskers almost impossible
to distinguish in video fragments.

Clack et al. used a local-minima algorithm to detect
whisker pixels, and a parameterized line detector to find the
sub-pixel position of the whisker points. When whiskers
cross, their method leaves a gap, which is filled up by
interpolation [1]. When we tested their method on our videos,
we found that the algorithm has difficulties when trying to
accurately describe crossing whiskers; they are often detected
as two separate curves, which leads to tracking errors in the
video.

Knutsen et al. use a convolution-based algorithm to track
rat whiskers by manually locating whiskers on the first frame,
and then fitting a piecewise polynomial function. This
worked well for trimmed rats, but required intervention for

Stairway to Abstraction: an Iterative Algorithm
for Whisker Detection in Video Frames

Jan-Harm L.F. Betting, Vincenzo Romano, Laurens W.J. Bosman, Zaid Al-Ars, Chris I. De Zeeuw,
Christos Strydis

Erasmus MC, Rotterdam, The Netherlands

O

978-1-7281-3427-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:26:45 UTC from IEEE Xplore. Restrictions apply.

untrimmed rats. As for mice, the algorithm was only validated
in untrimmed animals [4].

III. PROPOSED ALGORITHM
Whiskers on top-view images can be described as

curvilinear structures: their width is negligible compared to
their length. The ViSA algorithm uses a local intensity
difference detection algorithm to detect which pixels are part
of whiskers. Whisker shafts are then detected by a connecting
pixels from the outside of the band to those on the inside of
the band. The detection algorithm, however, only allows for
pixel accuracy. A better way to trace the whiskers is to
approach the shape of the section of a whisker by a second-
order Taylor polynomial, and finding its vertex analytically,
as was done in [7]. In this way, it is possible to use differences
in intensity between pixels to estimate the exact position of
the centerline, rather than just determining whether a pixel is
part of the whisker or not. When we applied this technique to
our preprocessed whisker images, we found that the
centerlines of the whiskers were detected with barely any
noise, as can be seen in Figure 2.

The centerline detection algorithm detects centerline
points, but not whiskers. Due to differences in intensity
among whiskers on the frames and the limited resolution of
the videos, it was not possible to find a configuration for the
curvilinear structure detection algorithm that would produce
fully continuous centerlines. Furthermore, when whiskers
cross, the lower whisker is bound to being partially obscured,
which leads to an interrupted centerline.

The clustering and abstraction algorithm we propose
makes use of the fact that, as clusters grow, they define the
local shape of the whisker. This information can then be used
to merge collinear clusters, and eventually even identify
partially obscured whiskers.

A. Local clustering
The first step consists of locally clustering individual

centerline points. The main information we have here is the
position of the whiskers points on the image. Furthermore,
the curvilinear structure detection algorithm gives us some
information about the local direction of the structure at every
point.

We considered two options for local clustering: the
DBSCAN algorithm [3], which clusters points based on local
distance (if the distance between two points is smaller than a
parameter , the points are clustered together). We also
considered the algorithm described in the Steger paper, where
centerline points in neighboring pixels are clustered using a

linear combination of distance and difference in local
direction as a guideline.

Theoretically, using both location and local direction
information would lead to more accurate clustering than
using just location information. In practice, we found that the
difference in performance for our application between the
two algorithms is minor, but it is essential that parameters be
well-chosen to prevent incorrect clustering. Because the
centerlines are interrupted, the number of clusters will still be
higher than the number of whiskers after the local clustering
step, as can be seen in Figure 3B.

B. Collinear cluster merging
Once smaller groups of centerline points are formed, it

becomes possible to further reduce the number of clusters by
merging those that line up (since those are likely to be part of
the same whisker). For clusters of a certain size, the direction
of a cluster of a certain shape can be determined with help of
the covariance matrix of the x- and y-coordinates of the points
in the cluster: the eigenvector corresponding to the absolute
largest eigenvalue of the covariance matrix corresponds to the
direction of the cluster. This eigenvector can be used to
construct a rotation matrix to align the cluster along the x-
axis.

Since whiskers are curved structures, and even the clusters
obtained with local clustering can be long and curved, and the
average direction of the cluster can differ from the direction
at the tips of the cluster. However, by aligning the cluster
along the x-axis, it becomes easy to extract n points from
either end of the cluster, in order to create two sub-clusters
(the top and the bottom ends). The covariance matrix can
again be used to determine the direction of the cluster at the
tips.

Knowing the direction and the position of the tips of the
clusters, it becomes possible to determine the Euclidean
distance between the tops and bottoms of different clusters,
and to determine the difference in direction between tops and
bottoms. A linear combination of these two parameters can
be used to determine how likely it is that two clusters are part
of the same whisker (on the condition that the position of the
bottom of one cluster relative to the snout is higher than the
tip of the other one). In this way, we can assess the tops of all
clusters, determine which of the other clusters is collinear
(and this part of the same whisker), and merge those clusters.
If necessary, this procedure can be repeated, though usually

Fig. 1. ViSA algorithm for whisker extraction. Whisker pixels are extracted
from a narrow band around the snout. The detected pixels are divided into
three groups, and linearized whisker shafts are detected by drawing lines
between whisker points from the ‘inner’ group to those of the ‘outer’ group.
Image taken from [5].

Fig. 2. Whisker centerlines detected using the Steger algorithm. It is clear
that there is very little noise. When we zoom in to a place where two whiskers
cross, we find that the centerline points are well-aligned, even though the
centerline is not fully continuous.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:26:45 UTC from IEEE Xplore. Restrictions apply.

one iteration is enough. Eventually, we obtain one separate
cluster of centerline points for each whisker, as in Figure 3C.

C. Parameterization
Once each whisker is represented by a single cluster of

centerline points, the whisker needs to be described by a
limited number of parameters. In order to follow whiskers
over multiple frames, it is important that these parameters
fulfil the so-called compactness hypothesis: whiskers that are
very different should have very different parameterizations,
and whiskers that are similar (or a single whisker on two
subsequent video frames) should have similar parameters.

The videos that are used at the Erasmus MC contain free-
moving whiskers that do not touch objects. The shape of these
whiskers can be described well by a second-order
polynomial. Furthermore, the length of a whisker is
important, as well as its angle and position relative to the
snout (mice are able to shift the pivot point around which
whiskers rotate). We can thus describe a single whisker with
a set of four parameters: the length L, the position on a line
along to the snout, the angle relative to that line, and the
bending parameter b, which defines the deviation d=bx2 from
an axis x, defined by and . The parameters can be fit to the
cluster of centerline points by means of nonlinear regression,
using least-squares estimation. Figure 3D visualizes the
parameterized whiskers, and it can be seen that they closely
resemble the detected clusters of centerline points shown in
Figure 3C.

IV. IMPLEMENTATION AND PERFORMANCE
We implemented the whisker detection algorithm in

MATLAB. The preprocessing step, consisting of standard
image processing procedures (such as gamma correction) and
removal of the background and animal silhouette, were
adopted from BWTT. The centerline detection algorithm can
be performed in parallel per pixel and was therefore suitable
for processing on a GPU. In MATLAB, this can be done by
casting the image as a gpuArray, which moves it to GPU
memory. Per-pixel processing can then be done using the
arrayfun function.

The collinear cluster merging algorithm was implemented

in MATLAB and accelerated by data-parallelizing the
assessment of each cluster per iteration, by using a parallel
for-loop (parfor). Furthermore, the m-code script was
compiled into a MATLAB executable (MEX) file to speed up
execution. The parameterization algorithm was not compiled,
as the built-in nonlinear regression function of MATLAB
could not be embedded into a separate MEX file. The
collinear cluster merging step is performed a maximum
number of three times, but stops as soon as there are no
collinear clusters left.

The algorithm was run on a computer with an AMD Ryzen
7 1800X processor @ 3.6 GHz, with 32 GB RAM and a
GeForce GTX 1080 Ti GPU, running Windows 10 Enterprise
and MATLAB R2018b. We used a video fragment of 33,634
frames. The video had an original resolution of 640x480, and
was upscaled by a factor of 2 as part of the preprocessing step.
The video, of which one of the frames is visible in Figure 3A,
contains a challenging whisker situation: there are multiple
crossing and overlapping whiskers. There is also a long hair,
which crosses multiple whiskers.

The parallelizability per step, the execution time per frame,
and the average number of clusters before processing are
shown in Table I. The total execution time for clustering and
parameterization is 247.4 ms.
Porting the MATLAB code to a low-level programming
language or a different architecture will lead to a further
speedup; also, the steps can be implemented as a pipeline, to
decrease the processing time per frame.

The quality of the algorithm was tested on two criteria:
visual quality and execution time. Execution time was

measured in MATLAB using
the tic and toc functions.
Visual quality was measured
by the squared-error of the
parametrization fit: if the
error is low, that shows that
the cluster is likely to
accurately represent a
whisker; a high error
indicates either incorrect
clustering, or a whisker
shape that cannot accurately
be represented by our
bending parameter b. We
also used visual inspection to
see whether the
reconstructed image of
whiskers accurately

Fig. 3. Frame from a whisker video. (A) shows the original frame. (B) shows
the frame after local clustering, and (C) shows it after collinear cluster
merging. Different colors denote different clusters. (D) shows a
reconstruction of the whiskers based on a set of four parameters per whisker.
The last whisker was dropped before parameterization based on its length.

TABLE I
ALGORITHM STEPS

Step name Parallelizability

Execution
time per
frame

Avg. nr. of
clusters
before

processing
Local clustering Per pixel 128.3 ms 5,323
Collinear cluster
merging

Per cluster 46.83 ms 73.73

Parameterization Per whisker 72.26 ms 16.95

Execution time results per step of the process, over a 33634-frame video
fragment. Also the parallelizability and the number of clusters before
processing is shown (the parameterization step does not reduce the number
of clusters unless a minimum length is given as a parameter).

TABLE II
ALGORITHM STEPS

Whisker MSE of fit
1 0.0239
2 0.1238
3 1.0280
4 6.0417
5 3.6123
6 0.0274
7 0.0316
8 0.4537
9 0.0024

10 3.1131
11 107.32
12 0.0017
13 0.0739
14 0.3947

MSE of each of the fitted whiskers
in Figure 3. The whiskers are
numbered by their starting point
from left to right.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:26:45 UTC from IEEE Xplore. Restrictions apply.

represents the whisker profile that is visible on the original
frames.

Figure 3 shows the results of the different clustering steps,
with the original frame in light grayscale shades on the
background. The figure shows that the centerlines of the
whiskers are detected accurately. The different colors denote
different clusters. The long hair is detected as a whisker; this
not surprising, since it is a long and moving object, and it is
not problematic; it can easily be filtered out afterwards.
Future work includes the design and implementation of an
algorithm that can track detected whiskers over longer video
segments.

Figure 3C shows that the algorithm is able to cluster
crossing whiskers correctly. Figure 3D shows that four
parameters can accurately represent the original whiskers.
There are a few differences: the tips of some of the whiskers
on the right are too faint to be detected by the algorithm,
which is why their reconstructions are shorter than the
originals.

Table II shows the MSE that was calculated after fitting
parameters to each of the whiskers in Figure 3. Looking
closely at Figure 3D, it can be seen that the whiskers with a
high MSE do indeed fit the centerline shape a bit less well,
but even whisker 11 (with a MSE of more than 100) fits the
shape of the whisker quite accurately. As for the whole video
segment, Figure 4 shows that a large majority of the whiskers
has a MSE that is low enough to be considered an accurate
fit. This shows that the algorithm behaves well over longer
segments, too.

V. CONCLUSION
We designed a three-step algorithm for the detection and

parameterization of whiskers in top-view high-speed videos
of free-moving whiskers. The algorithm builds on a
curvilinear structure centerline detection algorithm, and
makes use of the fact that the direction of a cluster can be
determined through the covariance matrix of the coordinates
of its members. By determining the direction and position of
the tops and bottoms of the clusters, it is possible to determine
which of the clusters are collinear, which means that the
clusters are part of the same whisker. In this way, it is possible
to separate the centerline points of different whiskers and
make sure that each whisker has its own cluster, even when

whiskers are partially obscured.
The whiskers can be represented in an abstract fashion by

four parameters that represent physical properties: length,
bending, angle and position. When we reconstruct the
original image, we see that these parameters can be used to
reconstruct the original whisker accurately. We tested the
algorithm on a challenging whisker fragment and found that
it was able to accurately describe crossing whiskers.

The algorithm performed well in MATLAB, with the total
processing time per frame of 247.4 ms. Since the algorithm is
highly parallelizable and the different processing steps can be
implemented as a pipeline, an implementation in a lower-
level language will likely reduce the processing time even
further, which makes it useful for processing high amounts of
frames from a high-speed camera.

The whisker detection algorithm presented in this paper
can be implemented in a larger whisker-tracking software
package, which tracks individual whiskers from beginning to
end in longer video segments. This would make it possible to
study the movements of individual whiskers, instead of the
simple average of the detected whiskers, which would make
it possible to study the intact whisker system of mice in
unprecedented detail.

VI. REFERENCES
[1] N.G. Clack et al., “Automated Tracking of Whiskers in Videos of

Head Fixed Rodents”, PLoS Computational Biology, vol. 8, no.
7, Jul. 2012.

[2] R. Duin and D. Tax, “Statistical Pattern Recognition,” in
Handbook of Pattern Recognition and Computer Vision, eds. C.
Chen and P. Wang, 3rd ed., 2005, pp. 3-24.

[3] M. Ester et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise”, Proc. KDD-96,
1996, pp. 266-231.

[4] P.M. Knutsen, D. Kerdikman, and E. Ahissar, “Tracking Whisker
and Head Movements in Unrestrained Behaving Rodents”,
Journal of Neurophysiology 93, 2294-2301, 2005.

[5] I. Perkon et al., “Unsupervised quantification of whisking and
head movement in freely moving rodents,” Journal of
Neurophysiology 105, pp. 1950-1962, 2011.

[6] V. Romano et al., “Adaptation of Whisker Movements Requires
Cerebellar Rotentiation,” eLife, Dec. 2018.

[7] C. Steger., “An unbiased detector of curvilinear structures,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
20, pp. 113-125, 1998.

Fig. 4. Fraction of whiskers with an MSE lower than x for a video
fragment of 33634 frames. 89.2% of whisker parameterizations has a
MSE of lower than 10 pixels.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:26:45 UTC from IEEE Xplore. Restrictions apply.

