2021 IEEE International Symposium on Circuits and Systems (ISCAS) | 978-1-7281-9201-7/20/$31.00 ©2021 IEEE | DOI: 10.1109/ISCAS51556.2021.9401058

PlasticNet+: Extending multi-FPGA interconnect
architecture via Gigabit transceivers

Carlos Salazar-Garcia*, Ronny Garcia-Ramirez}, Renato Rimolo-Donadio¥,
Christos Strydis®, and Alfonso Chacén-Rodriguez?
*Mechatronics, ¥ Electronics Engineering, Instituto Tecnolégico de Costa Rica, Cartago, Costa Rica
§Dept. of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
Email: {csalazar, rgarcia, rrimolo, alchacon}@tec.ac.cr, {c.strydis}@erasmusmec.nl

Abstract—This paper addresses the communication challenges
posed in multi-FPGA systems, by improving a custom FPGA
interconnect architecture via the high-speed transceivers avail-
able in modern FPGA development boards. The proposed net-
work interconnection, built upon the PlasticNet architecture, is
evaluated using the high-speed serial transceiver in Zynq ZC706
FPGA boards. Results show a best-case latency of only 300 ns,
demonstrating equivalent results in terms of latency on a par
with the known BlueLink framework, but with the plus of having
total re-configurability across the different layers of its network
interconnection model. This makes the current proposal a com-
petitive option for the development of distributed, heterogeneous
multi-FPGA processing systems.

Index Terms—Custom FPGA networks, HLS, AXI4, inter-
connect architecture, inter-FPGA communication, multi-FPGA
distributed processing.

I. INTRODUCTION

The use of FPGAs has become widespread in distributed
processing systems due to their high-logic capacity, integration
of standard processing cores, floating-point capabilities, flex-
ibility, power efficiency, embedded high-speed transceivers,
and the availability of development tools such as High-Level
Synthesis (HLS) for the rapid prototyping of complex designs
(see [1]-[3]). But as the size and complexity of modern data
processing grows, more and more applications hit the maxi-
mum logic capacity when ported even to high-end FPGAs, re-
sulting in the need of the partitioning of designs among several
FPGAs. Applications such as the simulation of biologically
accurate neural networks [4]-[6], stencil computation [7], and
hardware accelerators in common cluster infrastructures [8],
[9] are current examples.

Distributing processing across different FPGAs entails ef-
ficient communication among the data-processing nodes, es-
pecially in terms of effective data-transfer rates and their
interconnect flexibility. A proposal is given in [10] to tackle
both issues: PlasticNet, a custom FPGA interconnected archi-
tecture aimed at distributed applications requiring massive data
processing. PlasticNet enables the interconnection of different
processing nodes (PNs) located both within the same FPGA
and in neighboring FPGAs, through a reliable, flexible, and
efficient custom protocol. PlasticNet is compatible with differ-
ent types of PNs ranging from a simple module implemented
in some hardware description language (HDL), to a complex
block implemented using high-level synthesis (HLS), or a

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

hard/soft embedded FPGA Processor system communicating
through a DMA interface.

PlasticNet’s performance has been presented in [10], but its
physical interface was restricted to single-ended signaling and
low-voltage differential signaling (LVDS), with its associated
limited bandwidth. Latest generation FPGAs, nonetheless,
includes faster, multi-Gigabit transceivers that easily surpass
the attainable bandwidth provided by LVDS interconnects.

This paper presents the integration of high-speed
transceivers within PlasticNet’s interconnection architecture.
Its performance is evaluated on a multi-FPGA system
composed of a stack of Zynq ZC706 FPGA boards, with
results compared against other interconnection alternatives
found in literature. The paper is organized as follows:
section II gives a literature review. Section III glances
over PlasticNet’s architecture. Section IV details the design
flow proposed for handling the multi-gigabit transceivers
embedded in modern FPGA boards. Section V evaluates
the performance of the improved interconnection network
architecture. Lastly, section VI gives the main conclusions
and discusses future work.

II. REVIEW ON MULTI-FPGA SYSTEMS

A general classification of multi-FPGA-based systems is
provided in [11]: Hardwired Off-the-Shelf, Custom and Ca-
bling. The first option comprises ready-made multi-FPGA
boards. The second group gathers systems consisting of build-
your-own multi-FPGA platforms, where physical interconnec-
tions among the different FPGAs are through printed hard-
wiring. The last category takes advantage of modern FPGA
evaluation boards and proposes the interconnection of several
single FPGA boards using external cables. After reviewing
the characteristics of these three types of systems, authors
of [10] have argued that cabling-type systems are not only
more affordable, but are easier to deploy too, coming with the
adaptability for varying processing needs as those required
for instance for flexible interconnect frameworks such as
PlasticNet.

PCle would seem a straightforward solution, as proposed
for instance in [12], [13], which presented multi-FPGA appli-
cations communicated through a PCle switch. However, most
FPGA boards only contain one PCle port, limiting physical
interconnection across different network topologies. Besides,

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:22:16 UTC from IEEE Xplore. Restrictions apply.

its implementation in hardware is not straightforward and
requires either the use of some proprietary hardware block
or an open-source high-performance PCle streaming library,
such as the one developed in [14].

An alternative is given in [5], where authors report Blue-
Hive, a multi-FPGA system based on an FPGA-to-FPGA
interconnect library called BlueLink, allowing to build clusters
of FPGAs boards for massive data processing applications,
through cheap interconnect fixtures. By incorporating a thor-
oughly defined network interconnection architecture and using
of all the high-speed transceivers built into the FPGA evalu-
ation boards, BlueLink proved, to be a good choice for those
in search of flexible, scalable multi-processing using FPGAs.

PlasticNet builds on the same goals as BlueHive and
its BlueLink interconnect framework (see [10]) proposing
a custom FPGA interconnect architecture designed for dis-
tributed processing applications as well. But, unlike BlueLink,
PlasticNet is completely re-configurable, therefore it makes
no assumptions on the type of blocks being connected in
the application layer. And though PlasticNet’s preliminary
results were not competitive against BlueHive (with an average
latency 7.5times slower: 16 us against the 500ns reported
in [15]), these numbers were considered as promising, since
PlasticNet’s first version only supported a serial transmission
physical layer operated using LVDS.

III. OVERVIEW OF PLASTICNET

Figure 1 shows the general PlasticNet architecture: Fig. 1(a)
presents the hardware blocks used to build PlasticNet’s com-
munication infrastructure, while Fig. 1(b) depicts its protocol
hierarchy.

At the highest level is the application layer, governed by
the user-defined application, which in the case of this paper
is made up of a set of hardware/software PNs, each of them
implementing a part of an algorithm to be accelerated.

Each PN sends messages of up to 8 kB of data. In addition
to the message, each PN places a 4-byte header, where the
first byte is a global identifier of the transmitting node called
TX_UID, the second byte is a global identifier of the receiving
node called RX_UID and the remaining two bytes are reserved
for adding extra functionalities, if required. Both TX_UID and
RX_UID are unique for the entire network.

In the transport and network layer, each message is divided
into packets of user-defined size, depending on each appli-
cation, which varies in the range of 128 to 4096 bits. In each
packet, an extra 4-byte header is added, where the first byte is a
bus identifier for intra-FPGA data transmission called BS_ID.
The second identifier is the identifier of the transmitting FPGA
called FPGA_ID, which is used as an end-of-transmission
mechanism when a node broadcasts packets. Finally, the last
2 bytes store the payload size, embedded in each packet. The
transport layer is implemented within the unpacking/packaging
unit while the network layer is implemented within the internal
bus. The internal bus uses a daisy-chain topology (More
details on this block are available in [16]). The communication
between the two layers is done through FIFOs. For intra-FPGA

Application Layer

P!

|
1
1
1
IE 8
—_— e — —_'2 £ | Transport Layer |
r a : 35
| [+
: Packaging / Packaging / :
1| | Unpackaging Unpackaging | |,
|] @
1 1-33: &
1 e
[ony)
1 I I 1© 2
1 1
1 1 CRC Generation/Validation
: | :.F_’ § Reliability Layer
1 1“:\5
| &2 .
1 ' 2
1 1= < S
1l |1g' 8 o
1 RS =
\ v g 8b10b 64b66b
:| :% 8 2 Encoding/Decoding
1 S8 Link Layer
"
i 1135
1 % E
| | P A
GTX/GTH I Network Network ! GTXIGTH Serialization/Deserialization
Transceivers ! Controller Controller 1 Transceivers Physical Layer
! !
1 1
1 R 1 T
i _ _ PlasticNet 1 l GTX/GTH

Transceivers

(b)

Figure 1. General architecture of PlasticNet: (a) hardware blocks and data
flow, (b) layer hierarchy and Network Controller details. Blocks or layers
implemented via HLS are green-colored. Verilog blocks are in blue (shading
indicates the abstraction level). Physical layer IPs and FIFO blocks are yellow-
colored and were generated using Xilinx’s IP libraries.

communication, only the transport layer and the network layer

are required; thus, latency is optimized. Figure 2 depicts
PlasticNet’s packet format.
Header Data
I_H f—%
TAG PAYLOAD
Valid
BusID | FPGAID [PackedID | TXUID | RXUID | packed
bytes
1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes

Figure 2. PlasticNet’s packet format.

The Network Controller is the unit in charge of communi-
cating between the different FPGAs, and it is the focus of this
work. Its architecture is outlined in the next section.

IV. NETWORK CONTROLLER

The Network Controller implements the reliability, link,
and physical layers of PlasticNet, and is responsible for
sending/receiving packets among FPGAs. Figure 3 illustrates
its architecture: the yellow blocks are units implemented using
Xilinx IPs and the blue ones for units using Verilog HDL.

High-speed serial transceivers are handled with the
Xilinx®LogiCORE™ [P Aurora 8B/10B core, that provides
the resources to manage the transceivers. Aurora can han-
dle either GTP, GTX, or GTH transceivers, instantiating the
different-lane logic modules of the FPGA chip. During channel
initialization, verification phases and bonding are performed.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:22:16 UTC from IEEE Xplore. Restrictions apply.

RX
Interface

Receive
buffer

interface

axi_stream

Aurora IP

! "
Core N_tjansceiver

error detection ilanes
flags —t
1

interface

Auxiliar
buffer
interface

axi_stream

ap_fifo

1
1
1
1
1
1
1
1
interface :
1
1
1
1
1

™
Network

Interface
Controller 3

Figure 3. Network Controller block.

During operation, the different-lane logic blocks are analyzed
for detecting errors and maintaining the channel operating
properly. The encoding 8B/10B implemented in this Xilinx
IP allows the board-to-board interconnection using external
cables and backplanes. This lightweight, easy to scale IP
Core provides high data-transfer rates with efficient channel
management as reported in [17].

When Aurora 8B/10B is connected to an Aurora channel
partner, it automatically initializes the channel. After initial-
ization, data is sent through the channel using either streams
or frames. PlasticNet uses frames, which provide better data
transmission control than typical streaming formats, providing
for extra channel reliability. Since frames in Aurora can be
of any size, and considering that the Aurora core provides an
AXI4-Stream user interface for performing flow-control func-
tions and moving data from the channel to the application and
vice versa, an AXI4-Stream interface is used to encapsulate
each packet within each frame. The data port of each AXI4-
Stream interface depends on the number of lanes selected and
the lane width.

For the transmission of each packet, it must be divided into
multiple flits whose number of bits must be equal to the size
of the data port of the AXI4-Stream TX user interface. Each
flit is sent to the Aurora IP Core with each positive edge of
the user clock provided by this IP. The size of each frame is
controlled by the t_valid, t_last and t_keep AXI4-
Stream flags. These operations are completed in the block
called Flits Generator Unit.

Regarding reliability, the same strategy followed in [11]
was adopted. On the transmitter side, a Cyclic Redundancy
Check (CRC) is performed on each packet. Also, the BS_ID
is replaced by a 8-bit packet sequencer generated by the unit
called Sequence ID Generator. An auxiliary buffer stores a
copy of each transmitted packet. On the receiver side, the
Network Controller checks the CRC and verifies that the
sequence identifier matches the expected value. If one of the
two verification mechanisms detects an error, the receiver will
request the transmitter to resend the packet. As soon as the

Table 1
DEVICE UTILIZATION SUMMARY FOR THIS WORK (XILINX’S VIVADO
2018.3 POST-SYNTHESIS REPORT FOR A ZYNQ®-7000 SOC ZC706).

Number Packet Size
of PNs (bits) 128 256 512 1024 | 2048 4096

2 Slice 330 | 339 | 3.59 3.98 4.74 7.86

Registers (%) 5.6 6.19 | 6.58 6.75 8.29 11.38
1.28 | 2.56 | 5.12 | 10.24 | 20.48 | 40.96

[/
BRAMs (%) 1.92 | 384 | 7.68 | 1536 | 30.72 | 61.44

339 | 345 [370 | 4.18 5.74 7.07

LUTs (%) 5231566 | 610 | 697 | 869 | 12.16

ISISFSIRIEN

transmitter receives this request, it needs only read the data
stored in the auxiliary buffer, without resorting to higher layers
to solve the problem. These functions are implementing in the
Error-Handling Unit.

The packet generator unit takes data from the channel
through the AXI4-Stream RX user interface and reassembles
the packets. Using a routing table, the BS_ID identifier is
incorporated again in each packet. Finally, each packet is sent
out of the Network Controller to the Receive Buffer, which
connects the Internal Bus with the Network Controller.

Our Network Controller can thus be integrated into the
PlasticNet framework. This permits the creation of a multi-
FPGA network interconnection architecture which is capable
of efficiently handling all the transceivers embedded in modern
FPGA evaluation boards, with the additional advantage that
the external interconnection topologies between FPGAs are
re-configurable depending on the needs of each application.

V. EVALUATION

PlasticNet was evaluated using a stack of four Zynq®-7000
SoC ZC706 boards selected primarily because of their afford-
ability and availability. The FPGA has 16 GTX transceivers,
accessible on the evaluation board through the FMC (FPGA
Mezzanine Card) connector, SMA connectors, small form-
factor pluggable plus (SFP+) connectors and a PCI Express
adapter. The four FPGA boards are interconnected for the tests
reported here using a ring topology since: 1) evaluation boards
have a limited number of high-speed serial links and 2) few
applications exhibit an all-to-all interconnection architecture
among all the PNs which compose the distributed processing
system. Two Network Controllers were instantiated per FPGA,
one in charge of transporting data to the board located to
the left, and another in charge of moving data to the board
located in the opposite direction, following a ring topology. In
addition, the internal buffers were sized to avoid congestion,
allowing for up to 1024 data packets. The clock frequency was
fixed to 166.66 MHz and the line rate was set to 5.0 Gbps.
SMA cables were used for the physical interconnection.

The area of the network interconnection architecture was
evaluated while exploring two parameters: packet size and the
number of PNs contained by each FPGA. For a more adequate
evaluation, a situation where all the transceivers are enabled
was assumed. As seen in table I, data packets smaller than
1024 bits seemed more suitable.

A pseudo-random sequence number generator (a Linear
Feedback Shift Register (LFSR) written in C++ and synthe-

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:22:16 UTC from IEEE Xplore. Restrictions apply.

sized using Xilinx Vivado 2018.3 HLS) served as PN, in order
to test communication and evaluate PlasticNet’s performance,
in terms of latency and channel overhead. A variable number
of PNs is distributed both within the same FPGA as well
as in neighboring FPGAs. Both inter-FPGA and intra-FPGA
communication are managed by PlasticNet. Message sizes
range from 1 kB to 8 kB of data, sent to the PNs using different
packet sizes through the network infrastructure. Figure 4 shows
the channel overhead in terms of the packet size, assuming a
CRC32 for reliability checks. The results tend to the expected
theoretical value (since bandwidth overhead is 20% in 8b/10b
encoding), as the number of bits per packet increases.

N
<)

w
o

physical channel (%)

Overhead through the
N
o

0.02

0.03 0.06 0.13

Packet size (kB)

0.25 0.50

Figure 4. Channel overhead of the transmission channel after incorporating
Aurora 8b10b Core to PlasticNet, as a function of the packet size.

To determine latency, a distributed-processing application
with two PNs per FPGA is evaluated. Eight nodes were
instantiated within the four FPGAs, two per FPGA. Each PN
sends messages of varying size to its successor in the network,
testing thus both the intra and inter FPGA communication
links. Each message is transmitted using packets of different
sizes. Figure 5(a) shows the average transmission latency of
the messages between FPGAs, as a function of the packet
size, where each curve represents a different message size in
relation to the packet size. Figure 5(b) plots the PlasticNet’s
average latency considering different packet injection rates,
starting at 10% and ending at 100%, using a FIFO with a depth
of 1024 elements. Latency was also evaluated for different
packet sizes: latency scales linearly regardless of the packet
size as the injection rate increases.

Figures 5(a) and 5(b) suggest an optimal packet size of 64 B.
Such packet size allows for an average latency of only 300 ns
under lightly loaded conditions (input FIFOs usually near-
empty). At half-occupancy, latency was of 200 us, a more
likely situation with FIFOs at half capacity (FIFOs in this
case had a depth of 1024 elements), using a single serial link
in the physical layer. Figure 6 shows the obtained latency in
this work against BlueLink’s, with 10G Ethernet used as a
reference, under the same conditions as in [15]: a single lane
at 10 Gbps, short physical links, same-size flits and identical
workload conditions for the FIFOs. Note that the latency is
comparable to that one reported by BlueHive, and surpasses
Ethernet 10G’s (consider as well that the latter is limited
to one PHY controller per board, while PlasticNet, same as
BlueHive, has more transceivers available). Besides, also as
in BlueHive, as more transceivers are added in the physical
layer, the probability that FIFOs operate under lightly loaded

(=)}
o

::ni- —o— 64B
> —o— 1288
2 40 —e— 256B
% —o— 5128
e —e— 1024B
g % 20488
§ o—o f —o— ——38 —e— 40968
< 0 ‘: ~—
0 200 400 600 800 1000
Packet size (kB)
(a)
31000 —e— 16B
> 328
2 750 —o— 64B
2 —eo— 1288
o 500
&
© 250
2
< 0+ : -+ : : :
20 40 60 80 100

Packet injection rate (%)

(b)

Figure 5. (a) Average latency when sending different size messages, varying
the packet size. (b) Average latency as a function of the packet injection rate
using FIFOs with a depth of 1024. Each curve depicts a different packet size.

conditions is higher, thus improving latency even more. All
this without losing PlasticNet’s higher degree of configura-
bility over BlueLink, allowing for easier interconnection of
heterogeneous processing nodes in the highest layer, and the
use of alternative interconnection topologies (inter and intra-
FPGA) in the lower layer, depending on the application.

—~ 600

B

Lightly loaded Saturated

BN PlasticNet
I BlueLink
Ethernet 10G

o

Latency (ns

o

Figure 6. Latency comparison between the different network controllers of
PlasticNet, BlueLink and Ethernet MAC, at 10 Gbps. The comparison was
made under the same conditions.

VI. CONCLUSIONS

This paper has presented the integration of high-speed
transceivers into the PlasticNet framework. Evaluations in
terms of area, channel overhead and latency show that the
improved network architecture is feasible for distributed-
processing applications in multi-FPGA systems, with a latency
just over 300ns for lightly loaded links for a ring-based
multi-FPGA interconnect, half the latency of an Ethernet 10G
link. PlasticNet’s performance is practically equal to what
has been reported in [15], but with the added advantages of
its adaptability to a wider variety of networking topologies,
and its capabilities of integrating modules written either in
HDL, high level languages, or even hard macros such as
integrated processors, due to its full compatibility with the
AXI4 standard.

Future work includes: 1) developing PCB adapters for the
transceivers embedded in the target boards’ PCI and FMC
connectors and, 2) creating a centralized router for testing
other interconnection topologies.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:22:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. D. Underwood et al., “Closing the gap: CPU and FPGA trends in
sustainable floating-point BLAS performance,” in /2th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, April
2004, pp. 219-228.

[2] K. D. Underwood, “FPGAs vs. CPUs: trends in peak floating-point

performance,” in FPGA, 2004.

K. Alfaro-Badilla et al., “Prototyping a Biologically Plausible Neuron

Model on a Heterogeneous CPU-FPGA Board,” in 2019 IEEE 10th Latin

American Symposium on Circuits Systems (LASCAS), Feb 2019, pp. 5-8.

[4] A. Sripad et al, “SNAVA—A real-time multi-FPGA multi-model
spiking neural network simulation architecture,” Neural Networks,
vol. 97, pp. 28 - 45, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0893608017302150

[5] S. W. Moore et al., “Bluehive - a field-programable custom computing
machine for extreme-scale real-time neural network simulation,” in 2072
IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, 2012, pp. 133-140.

[6] A.Zjajo et al., “A Real-Time Reconfigurable Multichip Architecture for
Large-Scale Biophysically Accurate Neuron Simulation,” IEEE Trans-
actions on Biomedical Circuits and Systems, vol. 12, no. 2, pp. 326-337,
2018.

[7]1 K. Sano et al., “Multi-FPGA Accelerator for Scalable Stencil Computa-

tion with Constant Memory Bandwidth,” IEEE Transactions on Parallel

and Distributed Systems, vol. 25, no. 3, pp. 695-705, 2014.

0. Knodel et al., “Integration of a Highly Scalable, Multi-FPGA-Based

Hardware Accelerator in Common Cluster Infrastructures,” in 2013 42nd

International Conference on Parallel Processing, 2013, pp. 893-900.

A. Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services,” IEEE Micro, vol. 35, no. 3, pp. 10-22, 2015.

[10] C. Salazar-Garcia et al., “Plasticnet: A low latency flexible network
architecture for interconnected multi-FPGA systems,” in 2020 IEEE 3rd
Conference on PhD Research in Microelectronics and Electronics in
Latin America (PRIME-LA), 2020, pp. 1-4.

[11] Q. Tang et al., “Performance Comparison between Multi-FPGA Pro-
totyping Platforms: Hardwired Off-the-Shelf, Cabling, and Custom,”
in 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2014, pp. 125-132.

[12] V. Viswanathan et al., “Massively Parallel Dynamically Reconfigurable
Multi-FPGA Computing System,” in 2015 IEEE 23rd Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines, 2015, pp. 165-165.

[13] S. Gao and J. Chritz, “Characterization of OpenCL on a scalable FPGA
architecture,” in 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFigl4), 2014, pp. 1-6.

[14] M. Vesper et al., “Jetstream: An open-source high-performance PCI
Express 3 streaming library for FPGA-to-Host and FPGA-to-FPGA
communication,” in 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2016, pp. 1-9.

[15] A. Theodore Markettos et al., “Interconnect for commodity FPGA
clusters: Standardized or customized?” in 2014 24th International Con-
ference on Field Programmable Logic and Applications (FPL), Sep.
2014, pp. 1-8.

[16] R. Garcia-Ramirez et al., “Pre-Synthesis Evaluation of Digital Bus
Micro-Architectures,” in 2020 IEEE 3rd Conference on PhD Research in
Microelectronics and Electronics in Latin America (PRIME-LA), 2020,
pp. 1-4.

[17] Xilinx. (2016) Aurora 8B/10B v11.0 LogiCORE IP Product Guide.
[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/aurora_8b10b/v11_0/pg046-aurora-8b10b.pdf

[3

—

[8

[t}

[9

—

Authorized licensed use limited to: TU Delft Library. Downloaded on September 19,2022 at 17:22:16 UTC from IEEE Xplore. Restrictions apply.

