
The VINEYARD framework for heterogeneous
cloud applications: The BrainFrame case

Harry Sidiropoulos
School of ECE

Institute of Communication
and Computer Systems, ICCS

Athens, Greece
harry@microlab.ntua.gr

George Chatzikonstantis
School of ECE

Institute of Communication
and Computer Systems, ICCS

Athens, Greece
georgec@microlab.ntua.gr

Dimitrios Soudris
School of ECE

Institute of Communication
and Computer Systems, ICCS

Athens, Greece
dsoudris@microlab.ntua.gr

Christos Strydis
Erasmus MC

University Medical
Center Rotterdam,

Department of Neuroscience,
Rotterdam, The Netherlands

c.strydis@erasmusmc.nl

Abstract—Emerging cloud applications like machine learning,
AI, big data analytics and scientific computing require high-
performance computing systems that can sustain the increased
amount of data processing without consuming excessive power. To
this end, many cloud operators have started deploying hardware
accelerators, like GPUs and FPGAs, to increase the perfor-
mance of computationally intensive tasks. However, increased
performance, comes at a higher cost of increased program-
ming complexity for utilizing these accelerators. VINEYARD
has developed a versatile framework that allows the seam-
less deployment and utilization of heterogeneous accelerators
in the cloud without increasing the programming complexity
while offering the flexibility of software packages. This paper
presents the main components that have been developed in
the VINEYARD framework and focuses on BrainFrame, the
neurocomputing case that demonstrates the new framework’s
value. BrainFrame not only accelerates neuronal simulations but
also has an architecture that allows easy access to neuroscientists,
hiding the system complexity, and enabling a modular integration
of new accelerated simulators.

Index Terms—reconfigurable computing, hardware accelera-
tors, FPGAs, neurocomputing, cloud computing

I. INTRODUCTION

As the traffic in data-centers, continues to increase rapidly,
data-center operators are looking for novel systems that can
provide higher performance than typical processors without
consuming excessive amounts of power. In the domain of
embedded systems, vendors and designers have embraced the
heterogeneity paradigm in order to provide high performance
systems that are also energy-efficient. General Purpose proces-
sors (high performance and low power) are used to provide
flexibility and support software stacks, while specialized co-
processors are used to offload these processors for the most
widely used tasks such as encryption, compression, and signal
processing. Currently, it seems that cloud computing and data-
center operators are beginning to embrace the advantages
of heterogeneity in order to provide high-performance and
energy-efficient systems [1] [2].

Data-center operators, in the last few years, introduced
general-purpose GPUs (GP-GPUs) in order to provide users

Project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 687628.

with high-performance systems. Lately they are beginning to
deploy also FPGAs and they are looking at ways to allow
the cloud users to utilize the performance of these specialized
systems.

Amazon and Nimbix were among the first cloud providers
that allowed the instantiating and utilization of FPGAs and
GPUs in the cloud by cloud users. Currently other cloud
operators like Huawei, Baidu and Alibaba offer to the users
the possibility to rent and deploy FPGAs in order to speedup
their applications.

In the domain of research, VINEYARD has introduced a
digital marketplace for open-source modules for the research
community, called Accel-store [3]. Companies like InAccel,
rENIAC and Falcon Computing develop FPGA modules that
can deployed in FPGAs that are hosted by cloud operators
like Amazon AWS, Alibaba Cloud and Huawei. Accelize and
Amazon already provide marketplaces for these accelerated
modules. Cloud developers can browse the marketplaces and
rent the accelerated modules in the form of IP cores. Then the
cloud users can select a data center to deploy the accelerators
based on cost, availability etc. All of these companies provide
a wide range of IP cores. For example, InAccel provides ready-
to-use FPGA modules for machine-learning applications like
logistic regression, k-means clustering and recommendation
engines. The use of a library-based approach can be used to
foster the widespread adoption of hardware accelerators in the
cloud. The preferred method for utilizing these accelerators
is the deployment of easy-to-use hardware modules that can
offload tasks from the typical processor without changes in
the original code.

In this paper we present the VINEYARD approach towards
a unified, integrated framework that allows the seamless uti-
lization of heterogeneous accelerators in the Cloud. Section 2
outlines the VINEYARD approach. Section 3 provides details
of the neurocomputing use-case: BrainFrame. Finally, Section
4 gives an overview of the main results stemming from our
performance evaluation regarding VINEYARD project.

978-1-5386-8237-1/18/$31.00 c©2018 IEEE
70

II. THE VINEYARD APPROACH

A. VINEYARD Integrated Framework

VINEYARD, an EC-funded project, aims to allow cloud
users to easily utilize accelerators (Xilinx FPGAs, Maxeler
dataflow engines and Intel Xeon Phis) in heterogeneous data
centers in a manner similar to software packages and with the
same flexibility as any other cloud services. VINEYARD pro-
vides an integrated framework that hides from the user well-
known hardware-accelerator drawbacks, such as resourcing,
scheduling, programming and utilization, thus significantly
simplifying FPGA deployment. Figure 1 depicts a high-level
overview of the VINEYARD framework.

Applications that are targeting heterogeneous data centers
with contemporary servers are programmed using typical dis-
tributed programming frameworks, such as Spark [11], or more
application-specific frameworks such as the PyNN framework
that is used for neural networks [12]. In these applications,
VINEYARD provides the required APIs that enable the uti-
lization of heterogeneous infrastructures without any other
modifications in the source code. Some of the tasks such as
sorting of data, encryption, compression, pattern matching, are
extremely computationally intensive. These tasks have been
implemented in hardware as customized intellectual-property
(IP) accelerators that can achieve much higher performance
with lower power consumption. These hardware accelerators
are stored in an IP repository (Accel-Store) that interface with
the VINEYARD resource manager and scheduler. For each
application there is a range of versions based on the available
accelerator platform (FPGA, DFE, and Xeon Phi).

To interface with hardware accelerators, vendor-specific
libraries are used for low-level communication with hardware
resources. (e.g. Xilinx’s SDAccel and Intel’s OPAE library
[5]). On top of these interfaces, VINEYARD has developed
accelerator-specific drivers that are required for communica-
tion with vendor-specific libraries. On top of the accelerator
drivers, VINEYARD has developed the VINEYARD controller
(VineController) that allows the abstraction of accelerator
drivers from vendor-specific libraries and the utilization of
these accelerators from high-level programming frameworks 1.

For the cloud-computing applications, the software stack
of each node contains the VMs that are running on the
processor, the Local scheduler that dispatches the job to the
local accelerators, VineTalk layer that allows the virtualization
of the underlying hardware resources, and VineController that
serializes the jobs to the hardware resources. Applications can
either use directly VineTalk [6] and VineController for the
utilization of the resources or through the use of a central
scheduler. In the first case, multiple applications can share the
resources of a single accelerator through the virtualization of
resources (i.e. multi-tenancy). The scheduler and the resource
manager are used when these applications want to access
several heterogeneous infrastructures. In that case, VineTalk
can be used optionally if several applications want to share the
hardware resources. On top of the VINEYARD applications,
a web-based GUI can be used to allow control and utilization

of the available resources. For example, in case of neuro-
computing applications, BrainFrame [8] has been developed
that allows the utilization of the PyNN framework via VINE-
YARD’s heterogeneous resources. In cases of cloud-computing
applications that use programming frameworks like Spark, the
required APIs have been developed for allowing the utiliza-
tion of heterogeneous resources both at the scheduler and
the resource-manager level. The resource manager allocates
resources from the heterogeneous platform and dispatches jobs
to these nodes based on the application requirements. The
resource-manager tracks the information about the status of
these accelerators. The resource-manager also communicates
with an accelerator library controller that is used to fetch and
dispatch the right hardware accelerator from the Accel-Store
IP library based on the available resources (FPGA, DFE, or
Xeon Phi, based servers).

B. Accelerator Repository

To allow the widespread deployment of hardware accel-
erators in the cloud, and support an ecosystem-based ap-
proach, VINEYARD has adopted a library-based approach
that will decouple developers of the accelerator engines form
the cloud users. Towards this end, VINEYARD has released
an open-source repository for the IP cores that can be used
in FPGA, dataflow engines (Maxeler), GPUs and Compute
engines deployed in cloud-computing systems [3]. The repos-
itory currently contains several IP cores for applications like
neurocomputing, machine-learning and financial applications.
The repository supports platforms like dataflow engines from
Maxeler, SDAccel from Xilinx and Amazon AWS. The repos-
itory can either contain just the configuration file for the
specific platform (i.e. bitstream) or both the configuration file
and the source files for the IP cores. The repository is open to
the research community that is able to upload their accelerator
specific IP cores on the cloud. The current repository contains
the following accelerators for four main application classes:

1) Neurocomputing
• Inferior-Olive spiking neuron simulator
• Ordinary Differential Equations (ODE) solvers

2) Financial
• Black and Scholes algorithm
• Black77 algorithm
• Binomial

3) Machine Learning
• Logistic Regression
• K-means clustering

4) Data Management
• Compression

III. BRAINFRAME USE-CASE

A. BrainFrame as an evaluation workload

The integrated VINEYARD framework has been evaluated
under three real-life workloads and industrial benchmarks for
financial applications, data management, and neurocomputing
applications.

71

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece C. Kachris et al.

CPU

Accelerator
Kernel

Mem

CPU

Dataflow enginesFPGAbased servers

In
fi
n
ib
an
d

P
C
I DFE

CPU

Accelerator
Kernel

Intel FPGAbased servers

UPI

Dataflow
drivers

FPGA Drivers

Xilinx SDAccel Intel OPAE

SliC

Neurocomputing

BrainFrame
Pynn

interface
& GUI

Financial

App
Interface

Data Management

Database
Interface

Cloud computing frameworks

VAQ

Spark APIs

Khronos OpenCL

Accelerator
C/C++ controllers

Accelerator’s
JNI functions

Accelerators Java API MaxCompiler APIsVineTalk

Mesos AgentVINEYARD Scheduler & Resource Manager Mesos Master

Application
SchedulerLocal Scheduler

worker Master

IP Library

Neurocomputing

FPGA DFE
CPU

Accelerator
Kernel

UPI

DFE

DFE
DFE

Financial

FPGA DFE

Data Management

FPGA DFE

Virtualization
APIs

VINEYARD
Controllers, API

VINEYARD
drivers

Vendor libraries

libVine.jar
(vineyard classes)

MaxCompiler

DFE MaxSkin

Figure 1: High-level overview of the VINEYARD framework and the accelerator platforms

hardware accelerator from the IP library based on the available
resources (FPGA-based servers, DFE, or Xeon Phi).

4 THE VINETALK INTERFACE
Figure 2 presents the design of VineTalk for a single server setup.
Our design consists of a Software-facing API, Hardware-facing API,
a communication layer based on shared memory and a Software
Controller.

4.1 Software Facing API
Our Software-facing API replaces the multitude of all platform-
specific accelerationAPIs, all of which provide functions that handle
memory management and data and task transfers between applica-
tions and hardware accelerators. The implementation of the API is
completely decoupled from accelerator details. VineTalk achieves
this by using three main abstractions: VineAccelerators, VineTasks,
and VineBuffers. A VineAccelerator is a virtual accelerator that can
execute a specific kernel. When a VineAccelerator is created by
an application, the application specifies the kernel that it needs to
execute. Then, the system identifies the physical accelerators that
can execute the required kernel and maps the VineAccelerator to
one or more physical accelerators.

ApplicationsApp 1

V
in

e
Ta

lk

Software
API

Communication
Layer

VA1

Software
ControllerThread Thread

VA2

Hardware
API

FPGA

SDAccel

GPU

CUDA

Communication
Layer

VA1

Software
ControllerThread Thread

VA2

Hardware
API

FPGA

SDAccel

GPU

CUDA

App 2

Figure 2: The Vinetalk module that allows sharing and
scheduling of the accelerator resources

VineAccelerators can be shared across threads but are private to
applications. Each application can allocate as many VineAccelera-
tors as it desires. VineTalk uses a repository of kernels to instantiate
them on an FPGA at system initialization. The FPGA may support
multiple partitions. Although VineTalk can remove unused kernels

Fig. 1. High-level overview of the VINEYARD framework and the accelerator platforms.

The neurocomputing workload evaluated lies in the domain
of scientific computing, and more specifically in the domain
of computational neuroscience which aims at better under-
standing the working of the human brain through the use of
mathematical models of biological neural networks [4]. This
particular application is a high-performance, high-accuracy
simulation of the Inferior-Olivary nucleus of the brain and is
simply called the Inferior-Olive application. The Olivocerebel-
lar system is critical in facilitating motor function in humans.
Better modeling and understanding of its function can lead
to major breakthroughs in the treatment of cerebellum-related
degenerative diseases (such as autism, fragile-X syndrome
etc.).

As is shown in Figure 2, the neurocomputing application use
case of VINEYARD has the highest throughput requirements
but not so strict latency constrains.

The VINEYARD integrated framework for hardware accelerators in the cloudSAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

Figure 5: Example of Application-level scheduling with four
VMs having different scheduling policies

data-aware policies and adaptively selects the most appropriate
scheduling method during runtime.

Figure 16 shows an example of Application-level scheduling
applied to four VMs owned by tenant 1 and 2. The Application-
level scheduler monitors the activity of RDDs in each VM and
adaptively applies one of the following scheduling policies for the
best performance: FIFO, Priority, Data-aware, and Hybrid.

6 ACCELERATOR REPOSITORY
To allow thewidespread deployment of hardware accelerators in the
cloud, a library-based approach is required that will decouple the
developers of the accelerator engines form the cloud users. Towards
this end, VINEYARD has released an open-source repository for the
IP cores that can be used in FPGA and dataflow engines (Maxeler)
deployed in cloud computing systems. The repository currently
contains several IP cores for applications like neurocomputing, ma-
chine learning and financial applications. The repository supports
platforms like dataflow engines, SDAccel from Xilinx and Amazon
AWS. The repository can either contain just the configuration file
for the specific platform (i.e. bitstream) or both the configuration
file and the source files for the IP cores. The repository is open
to the research community that want to upload their IP cores on
one of the platforms that support FPGAs in the cloud or for any
other cloud application on other platforms. The current repository
contains the following accelerators for three main categories:

• Neurocomputing
– Simple Inferior Olive
– Ordinary Differential Equations (ODE)

• Financial
– Black and Scholes
– Black77
– Binomial

• Machine Learning
– Logistic regression
– Kmeans clustering

• Data Management

1

10

100

1000

10000

100000

1 10 100 1000

LA
TE

N
CY

 (
R

ES
PO

N
SE

TI
M

E)

THROUGHPUT

Applications evaluated based on the requirements

Neurocomputing

Financial

Data Management

Risk valuationTrading system

Compression

Machine
Learning

Query
processing

2x - 7x

2x - 10x

10x - 40x

2x - 4x

Figure 6: Speedup of applications evaluated categorized
based on the application requirements (throughput-latency)

– Compression

7 EVALUATION IN USE-CASES
The integrated framework has been evaluated under three real-life
workloads and industrial benchmarks for financial applications,
data management, and neurocomputing applications.

The first workload that is evaluated is in the domain of financial
applications and specifically for risk valuation and trading engines
[19]. The second workload that is evaluated is in the domain of
scientific computing, and more specifically in the domain of com-
putational neuroscience which aims at better understanding the
working of the human brain through use of mathematical models
of biological neural networks [4]. The particular application is a
high-performance, high-accuracy simulation of the Olivocerebel-
lar system of the brain, crucial to the understanding of cerebellar
functionality is simply called the Inferior-Olive application. The
Olivocerebellar system is critical in facilitating motor function in
humans. Better modeling and understanding of its function can
lead to major breakthroughs in the treatment of cerebellum-related
degenerative diseases (such as autism, fragile-X syndrome etc.).

The third workload is in the domain of machine learning that is
widely used in several applications like predictive analytics, mar-
keting, security and surveillance, Natural Language processing,
and other applications [12]. Finally, the last application is in the
domain of the data management and data processing. In this case,
we have examined applications like hashing, query processing and
compression.

The following figure shows an overall view of the applications
that have been evaluated and the maximum speedup that has been
achieved for these applications. For each application, the right plat-
form has been selected based on the applications requirements. For
example, applications like neurocomputing needs high computa-
tional power and thus dataflow engines have been selected, while
in other applications typical FPGA connected through PCIe with
the processors are used. As it is shown in this figure, hardware
accelerators can achieve significant speedup for these applications
and at the same time to reduce the TCO for these applications.

Fig. 2. Accelerated VINEYARD applications grouped by domain and
requirements (throughput-latency).

B. A case for hardware heterogeneity in Computational Neu-
roscience

Through the efforts of biologists and computational neu-
roscientists in recent decades, advance models of biologi-
cal neurons were developed using Spiking Neural Networks
(SNNs) [7]. These models do not abstractly capture aspects of
biological processes, like Artificial Neural Networks (ANNs),
but directly emulate them.

A major challenge is the sheer computational complexity
that many SNN models entail, compared to simpler modeling
classes. Even the simple types of SNNs have significant
demands as the studied neuronal network increases in size and
density both in terms of computation, but also data transfer and
storage.

The neuroscience community uses a large number of models
in order to simulate biophysically accurate biological coun-
terparts. Some of these models can be CPU-bound, whilst
other models might require high communication throughput.
Therefore, a single HPC fabric -whether hardware or software-
cannot cover all possible cases without sacrificing performance
for generality.

Even in the same neuron model, changing the characteristics
of the simulation, like neuron network size and density of
the network, has different effects on the performance of each
HPC accelerator fabric. This has been presented in [8] where
a state-of-the-art, extended Hodgkin-Huxley neuron model
of the inferior-olivary nucleus was used as a benchmark to
evaluate the BrainFrame framework. This worked as a proof-
of-concept of the need for heterogeneous fabrics ;there was no
single accelerator fabric, that offered best performance across
all model instances.

Furthermore there are different types of neuroscientific
experimentation that can help expand the research on the

72

human brain. There is the study of the behavior of very large
networks, like in [9], where using the neuromorphic hardware
SpiNNaker the researchers simulated 80,000 neurons and 0.3
billion synapses. There is also the need of exploring the
parameter space of neuron and synaptic models which requires
a large number simulations of smaller neuronal networks.
Lastly, real-time experimentation with complex, biologically
accurate neuron models, where the researcher could probe and
stimulate the network as if it was a real part of the brain would
significantly push the boundaries of neuroscientific research.
All of the aforementioned experimentation methods present
diverse computational and I/O workloads that cannot be sim-
ulated effectivelly (or even at all) in a simple homogeneous
computational system.

To summarize in the field of computational neuroscience,
experimentation comprises of really diverse workloads due to:

• A large array of neuron and synapse models, neuroscien-
tists use, that have different computational complexities.

• Different experimentation methods i.e. Large networks
dynamics, parameter space exploration, real-time re-
sponse, etc.

• Simulation characteristics and parameters like neuronal
network size, density, neuroplasticity, etc.

The BrainFrame approach is to provide scientists with an
acceleration platform that has the ability to adjust to the
aforementioned variety of workload characteristics. A hetero-
geneous system that integrates multiple HPC technologies,
instead of just one, would be able to provide this. In addition,
a framework for a heterogeneous system using a popular
user interface for all integrated technologies can also provide
the ability to select a different accelerator, depending on
availability, cost and performance desired. Such a hardware
back-end must overcome additional challenges to be used in
the field. It requires a front-end which should provide two
crucial features:

• An easy and commonly used interface through which
neuroscientists can employ the platform, without the
constant mediation of an engineer.

• A programming interface that can reuse the vast amount
of models already available to the community.

C. Brainframe architecture

BrainFrame, in order to provide an easy to use interface to
neuroscientists, is being developed as a web service. The main
actions the user can take in this web interface are three:

1) Upload simulation scripts.
2) Select the simulator and the accelerator type that wants

to use (there is also the option of letting the resource
manager automatically select the best resource avail-
able).

3) Run experiments and choose how the results are re-
ported.

The implementation of BrainFrame architecture is shown in
Figure 3. When a user requests a new simulation, the system
will retrieve information about utilization of the accelerated

DFE

P
yN

N
 /

 P
Y

H
ET

Phi

GPU

Xeon
Phis

GPUs

Data-
flow

Engines...

Xeon
Phis

GPUs

Data-
flow

Engines...

Users Web Interface Sim Scripts Cloud Resources

Fig. 3. This is a high level overview of the BrainFrame architecture.

and non-accelerated platforms. It will then based on the set
of simulation parameters and utilization information pick the
best out of the available machines, create a corresponding
simulation script and starts the simulation. This framework
is easily extensible to support new neuronal models and
accelerated simulators. Furthermore the system can be scaled
elastically on a cloud infrastructure such that if none of the
systems are available to run the simulation it will be then
executed on one of the cloud providers (AWS, Azure, Google
Cloud, etc.) provided the user owns a BrainFrame account
and sufficient credit. Once the simulation finishes on one of
the systems the information about the status will be sent back
to the user via the interface host and all associated information
(like simulation results).

As a language for the simulation scripts we selected PyNN,
a widely known and used framework by computational neu-
roscientists. PyNN is a simulator-independent language for
building neuronal network-models. The PyNN API aims to
support modeling at a high-level of abstraction (populations
of neurons, layers, columns and the connections between
them) while still allowing access to the details of individual
neurons and synapses when required. PyNN provides a library
of standard neuron, synapse and synaptic-plasticity models,
which have been verified to work in an identical fashion on
different simulators.

In order to use PyNN with our accelerated simulators, we
developed a new PyNN backend, pynn.brainframe. Figure
4 depicts how pynn.brainframe fits in the existing PyNN
structure. With the existing approach, each simulation platform
uses a custom-built interpreter to run models. Brainframe is
using an intermediate layer called PyHet that is able to
’translate’ the simulation options and elements to our custom
accelerated implementation, thus providing compatibility with
PyNN and the other simulators. As a part of this work, we
have targeted development of three heterogeneous back-ends:
Intel Xeon Phi, Maxeler DFE and NVidia GPGPU.

The common method for extending PyNN with new back-
end simulators, like BrainFrame, was to let PyNN create
the neuronal-network and then call the selected simulator to
execute the simulation. We disabled this function and decided
to translate PyNN simulation parameters to our custom accel-
erated simulator parameters. Although this was more complex
than sending a PyNN exported neuronal network, we opted
for the script due to size and network delays. Some large
experiments may need GB of data to describe the neuronal

73

Fig. 4. PyNN front-end used to implement BrainFrame tool-flow

network so it is faster to create the network locally on the
accelerator fabric than send it over network.

D. Experimental results
Our vision for the BrainFrame platform is to help the neu-

roscientific community further the knowledge for the human
brain. Towards this end, as mentioned previously, the road
is not paved with a single neuron model or experimentation
method but with a plethora of neuron models and diverse
experimentation. We aspire to create a modular system that
is supported by an active community of computer scientists
that constantly develop new accelerated simulators for new or
already existing models and a corresponding active community
of computational neuroscientists that experiments with those
simulators.

For this reason we wanted to experiment with diverse HW
resources, different simulators and different simulation charac-
teristics and showcase that way the benefit of the BrainFrame
framework.

As a first evaluation we showed in [8] that simulating
Inferior olivary nucleus neurons with different simulation
parameters resulted in diverse performance results. Figure 5
shows the selection for our use-case instances after perfor-
mance analysis. On the left, (y axis), the RGJ, NGJ and
SGJ represent the different neuronal-connectivity simulation
options while on the x axis is the number of neurons simulated.
The RGJ case selection, which presents the most complex case
in terms of accelerator choice, shifts between all three options
depending on the connectivity density (25, 50, 70 and 100%).
For example, for RGJ 100% and less than 4800 neurons the
optimal HW platform for simulation is the Maxeler DFE, but
for simulating more than 4800 neurons a GPU is a better
choice. For the SGJ case, (a simpler case than RGJ) the GPU
is always the accelerator of choice, while for the NGJ case
(the simplest of all cases, with no neuron interconnectivity
at all) the DFE yields optimal results under all experiment
parameters. Lastly, if the experiment is flagged as a real-
time experiment, the algorithm exclusively chooses the DFE

BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations 13

stress the parallelization capabilities of both the Xeon
Phi and the DFE. The DFE’s efficient parallelization of
the GJs relies mostly on its ability to unroll the GJ loop
on the FPGA hardware, allowing for more iterations to
finish per operation tick. However, the achievable un-
rolling factor is limited by the available chip area. For
network sizes above 1,000 neurons, the DFE compiler
is forced to reuse a lot of resources in time (as the un-
rolling factor is reduced with increasing network sizes).
In effect, the dataflow paradigm gradually degenerates
to a sequential execution, making the application less
scalable on the DFE. The Xeon Phi follows a similar
trend, as the communication overhead between cores
(which are interconnected through a moderately effi-
cient ring topology [5]) increases, leading to similarly
diminished scalability. Opposite to these accelerators,
GPU scalability is largely improved. The GPU is un-
derutilized until all CUDA cores are used (3,072) simul-
taneously, so for experiments over 3,000 neurons scal-
ability is gradually improving. As a result, the GPU
becomes the better performing solution (surpassing the
DFE) for network sizes of 4,800 neurons and above.

For lower connectivity densities under the RGJ
case, we observe similar trends, although the Xeon-
Phi scalability is slightly better because of the lower
interconnectivity (see Figure 15). Thus, the Xeon
Phi retains the advantages it has for lower than 100%
densities, compared to the DFE. Still, the effect of the
inter-core communications is present allowing for the
GPU to overtake the Xeon Phi for network sizes above
4,800 neurons (for densities of 50% and 75%) and above
3,840 neurons (for 25% density).

Under the SGJ case, the DFE and Xeon Phi follow
similar trends, although they are less pronounced (see
Figures 14 and 16). As in the RGJ case, the GPU
maintains its lead over the other two accelerator types
for all tested network sizes and connectivity densities.
Finally, in the NGJ case, the situation is the same as
with TYPE-I experiments: The purely dataflow nature
of the application allows the DFE to once more score
the best performance across the board (Figure 17).

3.2. Accelerator-Selection Algorithm

The performance analysis discussed above can now
be used to formulate a simple accelerator-selection
algorithm for BrainFrame automatically choosing the
best-suited accelerator fabric based on the problem
parameters: mainly, connectivity detail (biophysically
realistic: RGJ, simple: SGJ and not present: NGJ),
density and network size. Figure 18 shows the
selection for our use-case instances. The RGJ case
selection, which presents the most complex case in
terms of accelerator choice, shifts between all three
options depending on the connectivity density. For
the SGJ case, the GPU is always the accelerator of

RGJ 100%

RGJ 75%

RGJ 50%

RGJ 25%

SGJ

NGJ

DFE PHI GPU

96

4800 7680

960672

864

3840

Figure 18. BrainFrame accelerator-selection map for TYPE-II
experiments. Selection is heavily dependent on the experiment,
involving all three accelerator fabrics. For TYPE-I experiments,
the DFE is always the optimal choice (not shown).

Table 4. Time savings (in minutes) with BrainFrame for
the assumed TYPE-II experimental scenario compared to three
homogeneous-accelerator systems. The % speedups are shown
in parenthesis.

BrainFrame vs.
Network DFE Titan X Phi

Size -only -only -only

384 0.0 (0.0%) 24.2 (86.2%) 8.6 (68.7%)
960 3.2 (13.8%) 45.8 (69.5%) 3.0 (12.8%)

5,760 1.9 (43.4%) 54.5 (27.0%) 10.7 (6.8%)
7,680 591.7 (40.0%) 1.9 (0.2%) 246.6 (21.7%)

All batches 707.7 (40.0%) 126.4 (10.7%) 268.9 (20.2%)

choice, while for the NGJ case the DFE yields optimal
results under all experiment parameters. Lastly, if the
experiment is flagged as a real-time experiment, the
algorithm exclusively chooses the DFE to accelerate
the application, as it is the only clearly viable
accelerator for real-time experiments.

As a simple example of how this selection can
speed up experiments, we can assume a scenario
where several batches of RGJ experiments need to be
executed for various network sizes. Let us assume that
each batch includes 5 experiments each with gradually
decreasing connectivity density (100%-75%-50%-25%-
0%) and that each experiment in a batch simulates
40 seconds of brain time. The time saving in this
example by using the BrainFrame system compared
to homogeneous systems that integrate only a single
accelerator type can be seen on Table 4.

The BrainFrame system can achieve significant
benefits compared to the single-fabric systems that
can range up to 86% faster execution. On
average, assuming the total runtime of all batches,
the BrainFrame system can achieve 40% speedup
compared to a DFE-only system, a 10.7% speedup to
a GPU-only system and a 20.2% speedup compared
to a Phi-only system. Although these figures will
vary based on the particular accelerator instances used

Fig. 5. BrainFrame accelerator-selection map on the Inferior olive simulator.
Selection is heavily dependent on the experiment, involving all three acceler-
ator fabrics.

to accelerate the application, as it is the only clearly viable
accelerator for real-time experiments.

In order to also support large-scale experiments we are
working on a version of the aforementioned simulator that
operates on multiple accelerator nodes. Early results show
that BrainFrame using the VINEYARD heterogeneous cloud
can simulate lighting fast even large-scale networks provided
the availability of the accelerator fabric. Figure 6 shows
some early results in experimenting with scaling over multiple
accelerator nodes, in this case Intel Xeon Phi, KNL edition,
to support large-scale simulations. Although this is an early
result and we are currently studying more optimization and
experimentation scenarios, BrainFrame, using the VINEYARD
heterogeneous cloud achieved a 4.2× speedup simulating
100,000 neurons with 100,000,000 synapses for 100 ms of
brain simulated time in 5 seconds (5000 ms).

IV. CONCLUSIONS

This paper has presented the main overview of the VINE-
YARD integrated framework that aims to facilitate the uti-
lization of hardware accelerators in the cloud and specifically

74

0

5000

10000

15000

20000

25000

1 PHI 2 PHI 4 PHI 8 PHI

Ex
ec

 T
im

e
fo

r
1

0
0

m
s

Si
m

Ti
m

e

Phi Nodes Used (KNL Version)

Scaling for 100k Neurons, 100m Synapses

Fig. 6. BrainFrame accelerating a large scale simulation of 100k neurons
with 100 million synapses in 1,2,4 and 8 Intel Xeon Phi KNL nodes [10].
Execution time is measured in ms per simulated 100ms of brain activity.

zooms in the BrainFrame neuroscientific use-case. We pro-
vided proof of the need for a heterogeneous cloud consisting of
different accelerator fabrics by showcasing the diverse needs of
the computational-neuroscience domain. With the use of these
accelerators we can speedup significantly the performance of
the applications and at the same time to reduce the total
cost of ownership and the power consumption in the data
centers. Also, the use of the VINEYARD repository aims to
decouple cloud users from the accelerators’ developers and
build an ecosystem thus facilitating the use of accelerators in
the cloud-computing community. The performance evaluation
of the BrainFrame real use-case shows the main advantage of
the adoption of the hardware accelerators in the cloud.

REFERENCES

[1] S. Byma, J.G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow.
2014. “FPGAs in the Cloud: Booting Virtualized Hardware Accel-
erators with OpenStack.” In Field-Programmable Custom Computing
Machines (FCCM), 2014 IEEE 22nd Annual International Symposium
on. 109–116. https://doi.org/10.1109/FCCM.2014.42

[2] C. Kachris and D. Soudris. 2016. “A survey on reconfigurable ac-
celerators for cloud computing.” In 2016 26th International Confer-
ence on Field Programmable Logic and Applications (FPL). 1–10.
https://doi.org/10.1109/FPL.2016.7577381

[3] VINEYARD Aceelerator repository http://www.accel-store.com/
[4] George Chatzikonstantis, Diego Jiménez, Esteban Meneses, Chris-

tos Strydis, Harry Sidiropoulos, and Dimitrios Soudris. 2017. “From
Knights Corner to Landing: A Case Study Based on a Hodgkin-Huxley
Neuron Simulator.” In International Conference on High Performance
Computing. Springer, 363–375.

[5] Intel. [n. d.]. Intel Open Programmable Acceleration Engine (OPAE),.
https: //01.org/OPAE

[6] Stelios Mavridis, Manolis Pavlidakis, Ioannis Stamoulias, Christos
Kozanitis, Nikolaos Chrysos, Christoforos Kachris, Dimitrios Soudris,
and Angelos Bilas. 2017. “VineTalk: Simplifying software access and
sharing of FPGAs in datacenters.” In Field Programmable Logic and
Applications (FPL), 2017 27th International Conference on. IEEE, 1–4.

[7] G. Wulfram and W. Werner, “Spiking Neuron Models”. Cambridge
University Press, 2002.

[8] Georgios Smaragdos, Georgios Chatzikonstantis, Rahul Kukreja, Harry
Sidiropoulos, Dimitrios Rodopoulos, Ioannis Sourdis, Zaid Al-Ars,
Christoforos Kachris, Dimitrios Soudris, Chris I De Zeeuw, et al. 2017.
BrainFrame: a node-level heterogeneous accelerator platform for neuron
simulations. Journal of neural engineering 14, 6 (2017), 066008.

[9] van Albada Sacha J., Rowley Andrew G., Senk Johanna, Hopkins
Michael, Schmidt Maximilian, Stokes Alan B., Lester David R., Dies-
mann Markus, Furber Steve B., “Performance Comparison of the Digital
Neuromorphic Hardware SpiNNaker and the Neural Network Simulation
Software NEST for a Full-Scale Cortical Microcircuit Model”, Frontiers
in Neuroscience, vol 12, 2018.

[10] Jeffers, J., Reinders, J., Sodani, A.: “Intel Xeon Phi Processor High Per-
formance Programming: Knights Landing Edition”. Morgan Kaufmann,
Boston (2016).

[11] Apache Spark, a unified analytics engine for large-scale data processing.
https://spark.apache.org

[12] PyNN, a simulator-independent language for building neuronal network
models. http://neuralensemble.org/PyNN/

75

