
87

Towards Scalable Arithmetic Units with Graceful Degradation

DANNY P. RIEMENS, Netherlands Institute of Neuroscience and Delft University of Technology
GEORGI N. GAYDADJIEV, Chalmers University of Technology and Delft University of Technology
CHRIS I. DE ZEEUW, Erasmus Medical Center and Netherlands Institute of Neuroscience
CHRISTOS STRYDIS, Erasmus Medical Center and Delft University of Technology

This article presents a new family of scalable arithmetic units (ScAUs) targeting resource-constrained, em-
bedded devices. We, first, study the performance, power, area and scalability properties of general adders.
Next, suitable error-detection schemes for low-power embedded systems are discussed. As a result, our
ScAUs are enhanced with a suitable error-detection scheme, resulting in a Parity-Checked ScAU (PCScAU)
design. The PCScAU strikes a flexible trade-off between space and time redundancy, offering dependability
similar to high-end techniques for the area and power cost of low-end approaches. An alternative design,
the Precision-Scalable Arithmetic Unit (PScAU) maintains throughput with degraded precision in case of
hardware failures. The PScAU is targeting dependable applications where latency rather than numerical
accuracy is more important. The PScAU’s downscaled mode is also interesting for runtime thermal manage-
ment due to its advantageous power consumption. We implemented and synthesized the PCScAU, PScAU and
a few important reference designs (double-, triple- and quadruple-modular-redundancy adders with/without
input gating) in 90-nm UMC technology. Overall, the PC-ScAU ranks first in 9 out of 10 power-delay-area
(PDA)-product variants. It exhibits 16% area savings and 12% performance speedup for 7% increase in total
power consumption, compared to the cheapest form of conventional hardware replication with the same fault
coverage. The PDA product of the PCScAU is, thus, reduced by 21%. It is interesting that, while total power
slightly increases, the PCScAU static power in fact decreases by 14%. Therefore, for newer technology nodes
where the static power component is significant, the PCScAU can also achieve—next to performance and
area – significant power improvements.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Fault-Tolerance; Reliability, Availabil-
ity, and Serviceability

General Terms: Design, Experimentation, Performance, Reliability

Additional Key Words and Phrases: Computer arithmetic, scalable design, graceful degradation, fault toler-
ance, error detection, error correction, low power consumption, embedded systems

ACM Reference Format:
Danny P. Riemens, Georgi N. Gaydadjiev, Chris I. de Zeeuw, and Christos Strydis. 2014. Towards scalable
arithmetic units with graceful degradation. ACM Trans. Embedd. Comput. Syst. 13, 4, Article 87 (February
2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2499367

The work has been partially supported by: the EU-funded project DeSyRe (Grant agreement no: 287611),
the Dutch Organization for Medical Sciences (ZonMw) and Life Sciences (ALW), Senter (Neuro-Basic)
and the ERC of the European Community.
Author’s addresses: D. P. Riemens, Netherlands Institute of Neuroscience, Meibergdreef 47, 1105 BA,
Amsterdam, Netherlands; G. N. Gaydadjiev, Chalmers University of Technology, Dept. of Computer Science
and Engineering, Rännvägen 6, S-412 96 Gothenburg, Sweden; C. Strydis and C. I. de Zeeuw, Dept. of
Neuroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, Netherlands; email:
c.strydis@eramusmc.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/02-ART87 $15.00

DOI: http://dx.doi.org/10.1145/2499367

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:2 D. P. Riemens et al.

1. INTRODUCTION

With the advent of mobile computing largely enabled by the rapid technology-minia-
turization trends, modern embedded applications place demands for ever lower power
budgets on computer architectures [Mudge 2001]. Low energy has also become a first-
order design constraint, particularly for battery-operated devices. However, the same
shrinking device features that have—at first—brought individual transistor power con-
sumption down, have also led to increasing power density per chip unit area, larger
process variations [ITRS 2011] and accelerated aging [Hazucha et al. 2003], to name
a few of the problems. The result of such effects in the coming nanoscale era is chips
with diminishing reliability due to the growing number of hard and soft faults. Main-
taining correct functionality in the presence of high fault rates is bound to increase
manufacturing costs and drive chip lifetimes down [Borkar 2005].

While these phenomena are manifesting in the mainstream market, research and
industrial niches have been struggling to build low-power embedded systems with
high fault tolerance for many years now. These niches commonly include mission-
critical systems for military, space, biomedical and other applications. In such systems,
the effects of the shrinking technology trends pose serious dangers for designers who
respond by staying with older and safer technology nodes [Strydis 2011].

In line with these observations, the primary objective of this work is to propose
a new family of gracefully degradable (through scalability) and low-power, integer
arithmetic units (AUs) for embedded systems. The reason we focus on AUs is that they
are one of the busiest components in low-power, embedded [Segars 1997] and high-
performance [Shrivastava et al. 2010] processors alike. They are, thus, a source of high
power consumption/dissipation as well as high fault sensitivity. On the other hand,
the properties of many AU designs permit striking efficient trade-offs between power
consumption, performance and fault tolerance. Such characteristics are their inherent
scalability and particular error patterns, discussed later.

In this work we, first, perform a comparison of various popular adder designs syn-
thesized in a modern technology node (UMC 90 nm, Standard Purpose), followed by
a comparison of error-detection/-correction (ED/EC) techniques suitable for low-power,
scalable AUs. Based on the findings of the two concise surveys we propose new grace-
fully degradable AU designs with 100% single-fault and 50% double-fault coverage
while ranking first among state-of-the-art competitors. Evaluation has been based on
the empirical cost metric Power-Delay-Area product (PDA) and its variants. The PDA
metric, used to characterize combinational circuits, factors in the power consumption
and area cost of a design as well as its propagation delay.

While this work broadly addresses low-power, embedded processors, our current
research is focused on biomedical, microelectronic implants (Smart implantable Med-
ical Systems - SiMS [Strydis 2011]), which is an excellent case of severely resource-
constrained embedded systems with high reliability requirements. The findings re-
ported in this work are generic yet, without loss of generality, when needed we will
explicitly borrow from implant specifications (e.g., AU width) to demonstrate the prop-
erties of our proposed adders. Thus, the following original contributions are made.

—We conduct a survey on the power, performance, area and scalability characteristics
of various standard integer-AU types, implemented in modern CMOS technology.

—We conduct a survey on ED/EC techniques suitable for application in the AU of
low-power embedded systems.

—We present a new family of low-power, low-area and fault-tolerant scalable AUs
which outperforms state-of-the-art AUs.

—We present adaptations of this AU family which can trade arithmetic precision for
performance as well as thermal dissipation.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:3

The remainder of this article is organized as follows. In Section 2 related work
is discussed. In Section 3, relevant background information is provided as well as a
study among general adders implemented in modern technology. Then, in Section 4,
the scalable-arithmetic-unit (ScAU) idea is presented: the design of the ScAU, the
data path, and the synthesis results are explained. Also, the ScAU’s synthesis results
are compared with competitive fault-tolerant adder structures based on redundancy.
A variant of the ScAU, the precision-scalable-arithmetic unit (PScAU) is, then, dis-
cussed. Finally, the effects on the ScAU design when using fast-adder building blocks
are investigated and a number of low-power design techniques is proposed to lower
the ScAU power consumption. In Section 5, several error-detection and -correction
schemes, suitable for protecting adders, are discussed. A detailed comparison between
residue (or modulo-3) and parity (or modulo-2) checking is presented. Two different im-
plementations of the parity-checking scheme are, then, compared and the most suitable
one is selected in the context of the targeted application domain. Section 6 presents
the fault-tolerant ScAU. Finally, in Section 7 the concluding remarks of this work are
drawn.

2. RELATED WORK

2.1. Scalable, Power-Proportional Arithmetic Structures

Scalable arithmetic units, ALUs and micro-architectures in general have been exten-
sively studied. For example, Lee [2005] presented a scalable Booth-multiplier. The
objective was to reduce the power consumption, by scaling down the multiplier width,
when both input operands contain small values (detected by a dynamic-range detec-
tion unit). A similar design is presented by Pfänder et al. [2008] focusing on flexible
word-length multiplication to save energy.

Kumar et al. [2005] presented a design for an energy-efficient, high-performance
architecture (including functional units, register files, caches, etc.), where the data
path is bit-sliced. The higher order bit-slices are only activated if required, which
saves a significant amount of energy. Iyer and Marculescu [2001] also worked on a
scalable micro-architecture. The resources are dynamically allocated, following the
running-program needs. Here, each basic block of code (instruction sequence without
jumps or branches) is analyzed determining the parallelism and resource usage and
the processor is reconfigured for each basic block. Any unused FUs are disabled using
clock gating. In Lin et al. [2005] a low-power ALU cluster design was presented, which
is basically an ALU that is composed of multiple clusters (2 AUs, 2 multipliers and
a divider), each placed onto a separate voltage island. That means, that any of the
clusters can be power-gated when not in use, leading to higher power and energy
savings than the regular clock-gating mechanism. Also, Monteiro et al. [1996] reported
the so-called data-dependent power shut down, which is used in the Intel-Pentium
family of processors. Even though these implementations do not have a flexible word
length, they all can be considered as scalable designs in terms of power consumption.

Another form of power-scalable designs exclusively used in arithmetic units, are
mechanisms to vary the arithmetic-operation precision. An example was given in
Amirtharajah et al. [1999] using distributed arithmetic, but many different imple-
mentations exist. The idea is that, whenever possible, the arithmetic unit does not
produce exact but, relaxed-precision results.

Besides, there are more motivations for scalable designs. Kursun et al. [2005] have
described the problems occurring when on-chip temperatures increase excessively. In
such cases the lifespan of the device is compromised due to the temperature-induced ac-
celerated aging and operating speeds are slowed down. Dynamic-thermal-management
techniques have been developed to cope with these problems by limiting the heat

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:4 D. P. Riemens et al.

dissipation so as to avoid reaching critical chip temperatures. Since power consump-
tion and heat dissipation are two sides of the same coin, scalable designs have been
employed for keeping the latter in check as well.

2.2. Fault-Tolerant Adders

Fault tolerance means that apart from detecting (certain) errors, the circuit is also
capable of correcting them. According to the literature, ED/EC methods to achieve
fault tolerance (at the architectural level) can be facilitated through: (i) hardware
replication, (ii) time redundancy, (iii) ED/EC codes, and (iv) various combinations of
the above techniques.

The most widely used ED technique is hardware replication. It has been utilized
for many years due to its high fault coverage. One can duplicate a circuit and feed
both the circuit outputs to a comparator; in case of comparison mismatch, an error is
detected. Such systems with resource replication are also called duplex or Duplication-
With-Comparison (DWC) [Mitra and McCluskey 2000; Parhami 2000; Sellers et al.
1968].

An example of a fault-tolerant adder using hardware replication is the TMR-adder
(Triple Modular Redundancy). Here, three adder units are present, operating simul-
taneously and feeding their results to a majority voter. This voter looks for a match
between any two of the three inputs and outputs that result. Another fault-tolerant
adder based on hardware replication is the QMR-adder (Quadruple Modular Redun-
dancy) [Townsend et al. 2003]. Two adders and a comparator form together a Self-
Checking Adder (SCA). Since, it is impossible to obtain information about which of the
two adders inside a SCA is faulty in case of error, the QMR contains two SCAs, with
both outputs attached to a multiplexer. In total, the QMR scheme contains four adders.
The fault coverage of these fault-tolerant adders is very high. However, the power and
area costs of the TMR and QMR are often excessive because of the replicated adder
structure and extra checker circuitry needed.

Another type of fault-tolerant adder employing hardware redundancy is described
in Khedhiri et al. [2012] and uses alternative computations. In every bit slice of the
adder, the sum and carry are computed in two different ways and compared with each
other. In case of an error, one of the redundant components is brought in to continue
the calculations, saving 11.1% in transistor count compared to the QMR adder.

Peng and Manohar [2005] presented an asynchronous adder which achieves fault
tolerance through dynamic self-reconfiguration. The adder is built based on a fault-
tolerant array. In case of a fault, reconfiguration logic will try different configurations
until a workable instance is found. Depending on the degree of fault coverage (single
faults to quadruple faults), the area overhead of these self-healing adders varies be-
tween 102% and 326% and is claimed to be lower than traditional redundancy methods
(TMR and QMR). Note that this technique can be also employed in sequential adders
at the cost of extra ED logic.

Cardarilli et al. [2006] employ the properties of radix-2, signed-digit representation
to build a fault-tolerant adder. Repair is based on graceful degradation: either by
recomputing the result with shifted operands and utilizing the intersection of the
obtained results to recover the correct output or based on a reduced-dynamic-range
approach, where the result is obtained faster but with fewer output digits.

A low-cost, fault-tolerant technique for carry-lookahead adders was proposed by
Namazi et al. [2009]. Correction of all single-bit and multiple-bit transient faults is
claimed. The power and area costs of this method are significantly lower than those of
the TMR adder or the duplicated adder with parity checking. The introduced additional
delay is small, in particular compared to parity-checked adders. This technique is,
however, only applicable for Carry-Lookahead Adders (CLAs).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:5

3. BACKGROUND

In this section, a short survey of adders is performed studying performance, power, area
and error characteristics. We implement all studied adders in a modern technology node
and investigate how their design characteristics scale with different input widths.

3.1. Standard Adder Types

The most well-known and simplest adder is the ripple-carry adder (RCA). The RCA
design is regular, easy to implement and with the lowest area and power costs among
all existing adders. Its primary limitation is the long critical path, which grows linearly
(O(n)) with the word width n. Faster adders with shorter delays but increased area and
power consumption also exist [Parhami 2000]. The well-known types are:

—carry-lookahead adder – CLA; O(log(n));
—carry-select adder – CSA; O(

√
n);

—carry-skip adder – CSK; O(
√

n); and
—ripple-carry/carry-lookahead adder (hybrid adder) – RCLA; O(log(n)).

For implementing a scalable-adder design, not only the delay, area and power con-
sumption of the adder are important. The adder should also lend itself to functionality
segmentation, that is, the ability to divide the adder up in segments, without compro-
mising the functionality and benefits of the adder in question; it should, therefore, have
a regular structure. Obviously, the RCA is always preferred in terms of power and area,
when it is deemed fast enough for its intended purpose. It also has the most regular
structure of all known adder types. The CLA, and in particular the RCLA hybrid, as
well as the CSK deserve some further investigation, mainly because of their regular
structures and their high-speed potential. The CSA will be omitted in our study due
to two reasons. First, this adder has no regular structure which makes scalable imple-
mentation very difficult. Second, previous studies such as Rabaey and Pedram [1996]
show that CSA overheads are considerably higher than those of the CLA while the
delay increases.

3.2. Implementation of Standard Adders

Next, a study among different adder structures is presented. A number of motivations
have led to this study. The first is to find the most suitable adder structure for imple-
mentation in the scalable arithmetic unit. Instead of duplicating adders, we implement
a single adder, scalable in size. The basic idea we present in this article is to shut down
only a part of the adder, namely that specific part where the failure has occurred, and
continue the computational work using the remaining adder part(s). Not every adder
structure is suitable for scalable-arithmetic-unit implementation, since the adder must
be divisible into (at least) two segments, capable of operating independently and to-
gether as a whole (to be detailed in Section 4).

Second, a number of researchers have already compared different adders in the past
such as [Callaway and Swartzlander 1992; Nagendra et al. 1996; Rabaey and Pedram
1996; Vratonjic et al. 2005]. However, in all studies the adders have been implemented
in significantly older technologies, such as 2μm CMOS [Rabaey and Pedram 1996]
and 1.2μm CMOS [Nagendra et al. 1996], so it was difficult to safely predict the
delay and power consumption for much smaller, sub-micron technologies such as 90-nm
CMOS. More importantly, we would like to verify whether the trends identified between
the various adders in older technologies still hold in 90-nm CMOS. Consequently, we
synthesized and compared various types of general adders to gain up-to-date insight on
their delay, area and power characteristics when implemented in modern technology.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:6 D. P. Riemens et al.

Table I. Results for 100MHz, random inputs, UMC 90 nm SP synthesis. Lowest values
per input size and per characteristic are denoted in bold.

Component Delay [ns] Area [units] Power [μW]
RCA 8-bit 0.79 232 13.20
CLA 8-bit 0.52 398 24.60
RCLA 8-bit 0.57 346 20.16
CSK 8-bit (4×2-bit blocks) 0.68 300 16.89
RCA 16-bit 1.48 464 25.71
CLA 16-bit 0.68 867 48.77
RCLA 16-bit 1.03 692 39.17
CSK 16-bit (8×2-bit blocks) 1.03 600 33.25
CSK 16-bit (4×4-bit blocks) 1.12 580 32.98
RCA 32-bit 2.86 928 50.93
CLA 32-bit 0.90 1734 97.92
RCLA 32-bit 1.95 1384 78.36
CSK 32-bit (8×4-bit blocks) 1.49 1312 74.02

Table II. Cost metrics (100 MHz, random inputs, UMC 90 nm SP technology). Lowest values per
input size and per metric are denoted in bold.

Component PA PD AD PDA
RCA 8-bit 3,062.40 10.43 183.28 2,419.30
CLA 8-bit 9,790.80 12.79 206.96 5,091.22
RCLA 8-bit 6,975.36 11.49 197.22 3,975.96
CSK 8-bit (4×2-bit blocks) 5,067.00 11.49 204.00 3,445.56
RCA 16-bit 11,929.44 38.05 686.72 17,655.57
CLA 16-bit 42,283.59 33.16 589.56 28,752.84
RCLA 16-bit 27,105.64 40.35 712.76 27,918.81
CSK 16-bit (8×2-bit blocks) 19,950.00 34.25 618.00 20,548.50
RCA 32-bit 47,263.04 145.66 2,654.08 135,172.29
CLA 32-bit 169,793.28 88.13 1,560.60 152,813.95
RCLA 32-bit 108,450.25 152.80 2,698.80 211,477.97
CSK 32-bit (8×4-bit blocks) 97,114.24 110.29 1,954.88 144,700.22

3.3. Synthesis Results and Evaluation

The synthesis results for the various adder types are depicted in Table I, the cost met-
rics in Table II, and Table III depicts the speed/area/power increase with respect to
the RCA. The cost metrics illustrated are typical figures of merit used when assessing
digital circuits; for capturing all interdependencies between the various design aspects,
we include here all first-order products of power, delay and area (PA, PD, AD, PDA).
Since we are evaluating combinational circuits, the number of different input combi-
nations is prohibitively large; we have, thus, used pseudo-random input vectors for our
experiments. The input drive strength of the adder circuits has been set high, and the
capacitive load on the circuit’s output ports was set to 0.1 pF. We targeted UMC 90-nm
Standard-Purpose technology.

We found that the RCA has the lowest PDA product, for all adder widths under
investigation. Thus, despite the long delays, the RCA is the most cost-effective adder
type. It can be seen from Table I that the CLA is the fastest adder and scores the lowest
for both the Power-Delay product and the Area-Delay product for the 16- and 32-bit
versions due to the very low delays. However, the power and area overhead of the CLA
is very large. Table III shows the large differences in delay, area and power between
the CLA, RCLA and CSK adders. Clearly, the CLA does not meet (ultra) low-power

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:7

Table III. Speed, area and power increase compared to RCA (100 MHz, random
inputs, UMC 90 nm SP).

Speed Area Power
Component increase [%] increase [%] increase [%]
CLA 8-bit 51.9 71.6 86.4
RCLA 8-bit 38.6 49.1 52.7
CSK 8-bit (4×2-bit blocks) 16.2 29.3 28.0
CLA 16-bit 117.6 86.9 89.4
RCLA 16-bit 43.7 49.1 52.4
CSK 16-bit (8×2-bit blocks) 43.7 29.3 29.3
CLA 32-bit 217.8 86.9 92.3
RCLA 32-bit 46.7 49.1 53.9
CSK 32-bit (8×4-bit blocks) 91.9 41.4 45.3

and/or small-area demands. Also, the 16-bit CLA contains two levels of lookahead logic
that is an irregular structure encumbering scalable design.

When comparing RCLA and CSK adders, we observe that the power and area in-
crease of the CSK are—for all widths—significantly lower than those of the RCLA.
The speed of the 8-bit RCLA is higher than that of the 8-bit CSK but for the 16- and
32-bit versions results are opposite. The conclusion can be drawn, then, that for 16- and
32-bit widths, the RCLA has no advantages over the CSK. Note that the 16-bit 4 × 4
CSK adder is less interesting than its 8×2 counterpart which is faster while requiring
minimal extra area and power. Therefore, the 4×4 CSK is omitted in Tables II and III.

Finally, we also subjected the RCA, CLA and CSK to worst-case input sequences (in
terms of power) while also considering glitching power in our study. Although absolute
power numbers change, the relative ordering of the adders remains the same. Con-
clusively, there are no significant differences in trends between the older technologies
used by Rabaey and Pedram [1996], Nagendra et al. [1996] and the more recent UMC
90 − nm Standard-Purpose technology.

3.4. Errors in Adders

Adders differ from all other logic structures because of the complications that occur
when an error manifests itself in the carry circuitry. The basic element in adders is the
full-adder. A full-adder is built by two (partially shared) circuits, to implement ‘sum’
and ‘carry’ [Parhami 2000; Sellers et al. 1968]:

sn = an ⊕ bn ⊕ cn−1 (I)

cn = an · bn + (an + bn)cn−1, (II)

where (II) can be subdivided into a generate (III) and a transmit/propagate (IV):

gn = an · bn (III)

tn = an + bn, (IV)

such that

cn = gn + tn · cn−1. (V)

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:8 D. P. Riemens et al.

A single fault in an adder circuit leads to an error that can fall into either one of
two different categories: a single sum-digit error or a burst of sum- and carry-digit
errors [Sellers et al. 1968]. A single error occurs when the fault is caused by a fault
in a sum circuit, a burst error by a fault in a carry circuit. This makes the error
characteristics of adders special, since burst errors normally only occur as a result of
soft errors (discussed in more detail later).

A single error in an, bn, or cn−1 will always cause an error in sn (I). An error in a carry
digit cn−1 will always propagate and cause an error in sn as well. So, a fault in a carry
circuit will cause two errors at a minimum: one carry-digit error and one sum-digit
error. Now, if the situation is such that, due to the error, the incoming carry cannot be
absorbed in stage n, carry digit cn will be erroneous and so will be sn+1. This way the
burst error can become arbitrarily long, however, the total number of errors is always
even. Because of this phenomenon, carry errors are of primary concern in adder ED
[Sellers et al. 1968].

4. SCALABLE ARITHMETIC UNIT

In Section 2, several prominent scalable arithmetic structures and fault-tolerant adders
have been presented. However, many existing solutions are not applicable to the domain
of ultra low-power and highly resource-constrained embedded systems because of their
high costs. In this article, we propose a new family of scalable arithmetic units based
on a novel hybrid technique between space and time redundancy. In so doing, our
proposal offers dependability similar to high-end techniques for the area/power cost
close to low-end ones.

As discussed previously, a common technique for building reliable computing systems
is hardware replication. For instance, if one adder fails, switching to a second spare
adder maintains correct operation. Of course, this method has high cost in terms of
power and area. Instead of duplicating the adder block inside the arithmetic unit, we
aim at implementing a single adder block only, albeit now a version capable of changing
the adder width to guarantee correct functionality. For example, an n-bit adder can be
divided into two n/2-bit segments. When a single segment fails, the AU could proceed
with the nonfaulty one. In such a case, a one-cycle, n-bit addition or subtraction will
be replaced by two-cycle n/2-bit operations. The word size of the arithmetic unit is
downscaled, even though the word size of the architecture remains the same. The
adder could be divided into more than two segments which would further increase
its reliability (the arithmetic unit would be able to proceed with the computational
work, even when multiple adder segments are damaged). However, the more segments
damaged the lower the remaining throughput will be. This scalable approach is an
example of graceful degradation. We will henceforth call the scalable arithmetic unit
ScAU.

4.1. ScAU Datapath

Primary concerns in the design of the ScAU are (i) an efficient multiplexing network
to redirect the data (operands and results) via alternative paths, (ii) the storage of
intermediate results for multicycle operations, and (iii) the control logic needed.

The data path of the proposed ScAU is depicted in Figure 1. The basis of the ScAU
comprises two separate n/2-bit adders, A (left adder) and B (right adder). The lower
n/2-bit part of the operands is fed to adder B, the upper n/2 bits to adder A. The carry-
out signal of adder B is connected to the carry-in of adder A. Each adder has its own
n/2-bit complementer and both the upper and lower half of the result are stored in a n-
bit output register. This provides the basis for a single-cycle, n-bit operation. When one
of the adders is faulty, the data must be rerouted. The adder, which is still intact, must
be provided with the lower half of the operands in the first cycle, and with the upper

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:9

Fig. 1. The scalable arithmetic unit (2×8-bit instance) with overflow- and zero-detection circuits included.
Tristates used for isolating any of the two 8-bit RCA blocks. Addition result placed in a 16-bit result register.

half of the operands in the second cycle (in downscaled mode). This is implemented by
a multiplexer network. To keep track of the current cycle (cycle 1 or cycle 2), and to
steer the multiplexer network, a controller is implemented. Also, a multiplexer network
is required for the output of the adders. The output of the functioning adder should
provide its result to the lower half of the result register in the first cycle, and to the
upper half of the result register in the second cycle. Finally, additional latches are
needed to store the value of the carry output of the functioning adder during the first
cycle, to feed it to the carry input of the same adder in the second cycle. This means
multiplexing at the carry inputs of both adders as well.

Furthermore, there is another important issue that requires attention. When the
scalable AU is in downscaled mode, it will require two clock cycles per operation instead
of one and, therefore, the amount of energy per instruction increases significantly. The
most obvious way to limit the energy per instruction is to shut down the segment that
is not used (prevent switching activity). For sequential circuits, clock gating is the
easiest way to disable a (sub)circuit. However, adders are pure combinational circuits
and, therefore, require another approach: input gating. This means keeping all of
the inputs of the circuit constant to prevent any switching activity and thus limiting
dynamic power consumption inside the circuit. Power gating would be another option
for achieving this (with the advantage that also static power is limited), however in
our specific case this is not beneficial, as will be explained later.

The initial design of the scalable AU is roughly subdivided into four parts: (i) the
multiplexing and input-gating network, (ii) the adder logic, (iii) the output multiplexing
logic, and (iv) the control logic. It is easy to see that the overhead of the ScAU mainly lies
in parts (i), (iii), and (iv). In the initial design, guard latches [Kaxiras 2008; Tiwari et al.
1998] were used to disable unused combinational logic which, in this case, is any unused
adder. It was, later, found that utilizing tri-state buffers for this purpose saves both
power and area (at least, for UMC 90−nmSP technology). Also, a single tri-state buffer

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:10 D. P. Riemens et al.

network can implement both the multiplexing and the input-gating functionality, which
saves further area and power. Since no additional logic for input gating is required,
input gating is preferred over power gating, as the latter would require extra logic.
However, if even more stringent constraints are placed on power consumption when
in downscaled mode and the static power component is considerably high (e.g., by
using a more recent technology node), power gating might become interesting. It can
be facilitated in the design quite easily since it requires only changes in the AU control
logic.

Apart from the operand inputs, there is an input signal (1 bit) to select for addition
or subtraction as well as a ‘scale’ signal (2 bits). This 2-bit signal is used to control
the scalability feature of the AU (A and B adders functional, A-only, B-only, none
functional). Finally, a special result register is required. This register must be able
to load all bits in parallel, as well as load the lower half and upper half of the result
individually. When the ScAU is in downscaled mode, the register should load the lower
half of the result in cycle 1, store it, and load the upper half in cycle 2.

Note that the controller described above is not depicted in the datapath of Figure 1.
Also, the ScAU is not fault tolerant yet. There must be error-detection and -correction
logic present, in order to detect a failure and reconfigure the circuit. This topic is
covered later, in Section 5. Without loss of generality, in this particular instance, the
cheapest adder type is utilized for the adder blocks: the RCA.

4.2. Reference Designs

So far, the concept of the ScAU and its general implementation have been explained. In
order to evaluate the ScAU, a 16-bit specific instance was implemented and compared
with the following reference adder designs:

—a 16-bit AU with a single adder (no redundancy);
—a 16-bit AU with a duplicated adder (redundancy); and
—a 16-bit AU with a dupl. adder, where one adder can be disabled (by input gating).

A 16-bit width has been chosen for our evaluation purposes since it is a reasonable
size for low-power, embedded systems [Hennessy and Patterson 2012, Appendix J.2].
It is also a nominal data size for most implant designs to date [Strydis 2011].

4.3. Synthesis Results and Evaluation

The synthesis results of the 16-bit ScAU, as well as the AUs with a single and a
duplicated adder, are shown in Table IV. The acronym AU refers to the arithmetic unit
implemented with a single adder, while DAU refers to the arithmetic unit implemented
with a duplicated adder structure (where both adders are simultaneously active). The
DAU-RAS is the arithmetic unit with a duplicated adder where the backup adder is
disabled by tristate buffers (RAS stands here for Redundant-Adder Shutdown). As
mentioned before, ScAU refers to the scalable arithmetic unit, where ‘nm’ stands for
normal, full-width mode, and ‘dm’ for downscaled mode.

From the synthesis results in the table, a number of conclusions can be drawn. As
expected, the DAU and DAU-RAS show an increase in area and power consumption,
compared to the single adder. However, the area and power consumption does not dou-
ble because the input and output registers are not replicated; only the combinational
logic is. The difference in area and power overhead between the single-adder AU and
DAU is relatively small, which means that the sequential logic dominates both area
and power consumption. When the unused adder is disabled, as in the DAU-RAS, the
overall power consumption reduces significantly. Yet, disabling any of the two adders
takes up more area due to the extra tri-state buffers needed.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:11

Table IV. Synthesis results of 16-bit AUs
(100 MHz, UMC 90 nm SP technology).

Design Area Delay Power
[units] [ns] [μW]

AU 1513 1.91 104.50
DAU 2185 2.09 181.60
DAU-RAS 2713 2.13 164.80
ScAU (nm) 2332 2.97 166.90
ScAU (dm) – – 118.90

Table V. Overheads compared to the single
16-bit AU (100 MHz, UMC 90 nm SP).

Design Area Delay Power
[%] [%] [%]

DAU 44.42 9.42 73.78
DAU-RAS 79.31 11.52 57.70
ScAU (nm) 54.13 55.50 59.71

The ScAU requires slightly more area than the DAU, but significantly less than
the DAU-RAS. Even though the power consumption of the ScAU in normal mode is
significantly lower than that of DAU, it is slightly higher than that of the DAU-RAS,
which is power-optimized by disabling the backup adder. This is to be expected because,
when the 16-bit backup adder in the DAU-RAS is disabled, there is no dynamic power
consumed (only a small amount of static power is dissipated). Furthermore, there is
not much additional hardware that consumes power apart from the output multiplexer
and the tri-state buffers (32 tri-states in total, 16 of them in ‘pass’ state, 16 of them
in ‘HiZ’ state) at the inputs. The ScAU on the other hand, does have the same power
consumption for the adder part (2×8-bit adder segments ≡ 16-bit adder), the same
power consumption of tri-state buffers (also 32 tri-states in total, 16 of them in ‘pass’
state, 16 of them in ‘HiZ’ state), but has on top of that power dissipated by the additional
control logic. This is the reason why the ScAU (normal mode) cannot dissipate less
power than the DAU-RAS.

The power consumption of the ScAU in downscaled mode (dm) is significantly lower
than in normal mode (nm), significantly lower than that of the DAUs, and only slightly
higher than that of the single-adder AU. Unfortunately, the ScAU shows a large increase
in delay because the additional logic resides in the adder’s critical path. It will be shown
later why this increase is irrelevant, since in the next design stage (when ED/EC
mechanisms are added) the critical path will become shorter again.

Table V shows the area, delay and power overheads of the DAU, DAU-RAS and ScAU
compared to the nonscalable, single-adder AU. What can be seen here is that the DAU
provides fault tolerance by implementing a backup adder, however this comes at a large
cost in terms of power (+73.78%) and area overhead (+44.42%). The DAU-RAS does
the same, albeit the backup adder is disabled to save power. In that case the power
overhead drops noticeably (+57.70%), yet the area cost almost doubles (+79.31%).

The ScAU incurs a power overhead similar to the DAU-RAS (+59.71%) but at a sig-
nificantly lower area overhead (+54.13%), by comparison. Of course, it does so through
a large increase in delay (+55.50%) which is still realistic for the class of applications
we are aiming. It should be noted that, by adding an AU to the reference AU and all
needed interconnecting logic, the ScAU incurs slightly more than 50% overheads across
all three metrics, implying that the design is highly scalable with size in terms of costs.
On the other hand, the DAU and DAU-RAS designs do not exhibit such uniform costs.
If absolute numbers are compared (instead of overheads), the power consumption of
the ScAU is 8.1% lower than the DAU and 1.3% higher than the DAU-RAS. The area
of the ScAU is 6.7% higher than the DAU and 14.0% lower than the DAU-RAS.

Since the ScAU requires a significant amount of hardware to implement the scala-
bility provisions, we decided to not examine a ScAU with four segments. This would
require even more hardware and would only be efficient when the adder width is unre-
alistically large. For a 16-bit adder, where each of the four segments is no larger than
only 4 bits, this will most certainly not be the case. For considerably wider architectures

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:12 D. P. Riemens et al.

Fig. 2. Precision scalable arithmetic unit (2 × 8 bit RCA instance) with simplified design compared to the
original ScAU. The zero-padding vector is applied to the output in case of error.

(such as 64 bits), 4 segments might be efficient but such data width is not practical for
our targeted class of systems.

4.4. Precision-Scalable Arithmetic Unit

Another implementation of the ScAU which dramatically reduces the energy per in-
struction in downscaled mode is the precision-scalable arithmetic unit (PScAU), de-
picted in Figure 2. Instead of performing the addition in full precision over two cycles,
some applications might tolerate discarding the lower (or higher) 8 bits of the operands.
If an error occurs, the erroneous adder segment can be shut down and the work can
continue with the remaining segment, where only the higher-order (or lower-order)
byte of the result is computed and the lower-order (or higher-order) byte is padded
with zeros.1 In that case, the precision of the addition is compromised, but now only
one cycle is required in downscaled mode instead of two. In Table VI, the synthesis
results of the ScAU and the PScAU are compared (UMC 90 nm, at 100 MHz). In down-
scaled mode, the ScAU requires 42.5% more energy per operation (compared to normal
mode) while the PScAU requires only 6.4% more energy. The PScAU is an option for
low-power architectures wherein two-cycle operations are not permitted (e.g., due to
unacceptable performance slowdown) but precision loss is acceptable.

Since the power consumption of the PScAU in downscaled mode is significantly less
than in normal mode (−36.5%), the PScAU becomes interesting for dynamic thermal
management. In systems where heat dissipation is a problem, the PScAU can temporar-
ily switch to low-precision operations to limit the chip temperature. This might be very
beneficial in the case, for instance, of implants whereby increased heat dissipation may
lead to reduced device lifetime as well as tissue damage, fibrosis etc.

1Different padding policies might be explored each with a different precision-error margin.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:13

Table VI. Comparison between ScAU and PScAU
(100 MHz, UMC 90 nm SP technology).

Design parameter ScAU PScAU
Delay [ns] 2.97 2.14
Area [units] 2332 2050
Power (nm) [μW] 166.9 165.9
Power (dm) [μW] 118.9 106.40
Energy/instruction (nm) [pJ] 1.67 1.66
Energy/instruction (dm) [pJ] 2.38 1.06

Table VII. Overheads of 16-bit ScAU for
different adder types with respect to the

single 16-bit AU (100MHz, UMC 90 nm SP
technology).

Area Delay Power
ScAU design [%] [%] [%]
ScAU (RCA-16/8) 54.1 55.5 59.7
ScAU (CSK-16/8) 49.7 88.4 55.6
ScAU (RCLA-16/8) 47.0 73.3 53.3

Henceforth, we will restrict our analysis to the ScAU since the PScAU is—
computation-, resource- and fault-coverage-wise—a proper subset of the ScAU. In effect,
if the ScAU proves better than the competition, then the PScAU will score even better
than the ScAU in terms of the PDA metric; this can be seen in Table VI. Higher fault
tolerance is also guaranteed by the simple fact that the PScAU contains a simpler
design (thus, less logic gates) than the ScAU. Besides, using the full-precision ScAU is
fairer when comparing with the reference designs such as the DAU-RAS.

4.5. Implementing Fast Adders in the ScAU

Table VII illustrates the overhead of the 16-bit ScAU with respect to the nonscalable,
single-adder AU, when faster adder types are employed for the adder blocks inside
the ScAU. The CSK and RCLA cases are studied, both being fast-adder designs, yet
relatively cheap in terms of power and area. This study is performed for architectural
scenarios wherein a RCA-based ScAU will not be fast enough, thus a fast-adder-based
ScAU will be needed.

If a faster, larger adder is used, the impact of the ScAU’s extra interconnection and
bypass logic is expected to become less prominent. Indeed, as Table VII shows, the area
overhead of the ScAU decreases with the adder size. Thus, the ScAU becomes overall
more area-efficient when built using fast-adder blocks.

For delay, the opposite is true. The n-bit ScAU is composed of two n/2-bit adder blocks
placed in series while the nonscalable AU employs one monolithic, n-bit adder block.
Since these blocks are simple ripple structures, this segmentation is of no significance
for RCAs but it is for the more complex fast adders. For instance, two n/2-bit CSKs
in series require smaller carry-skip lines than a monolithic n-bit CSK and, thus, can
never be as fast. Typically, fast adders become more efficient speed-wise when the word
width increases. Therefore, the ScAU delay overhead increases when fast adders are
employed.

Finally, the ScAU power overhead decreases when fast adders are used. This phe-
nomenon can be explained in the exact same way as the decrease in area overhead: fast
adders utilize more power, which makes the contribution of the overall logic less sig-
nificant. In conclusion, it can be said that, for higher adder speeds, fast-adder building
blocks make the ScAU more efficient since they reduce both area and power.

5. SCAU ED/EC ANALYSIS

Having facilitated functionality segmentation in the ScAU, in order to add fault toler-
ance, we have to retrofit the ScAU with ED and EC techniques next. The EC technique
for the ScAU has already been discussed: when an error occurs in one of the adder
segments, the particular segment is shut down and the ScAU continues with the com-
putations utilizing the remaining adder segment. The calculations, then, require two
clock cycles (ScAU) or a single cycle but with lower precision (PScAU). Earlier, the
datapath and scalability features of the ScAU were presented. In Section 6, an EC

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:14 D. P. Riemens et al.

controller responsible for reconfiguring the ScAU in the presence of errors will be
introduced. In this section, we focus on suitable ED schemes to trigger that controller.
A number of well-known ED schemes is discussed and compared with low-power and
low-area constraints in mind.

As mentioned in Sellers et al. [1968] and Davis [1965], single errors occur much
more often than double errors.2 In fact, the fault coverage does not increase signifi-
cantly when the ED scheme is extended for multiple errors. What does increase quite
dramatically is the cost incurred in the design by the ED scheme. On the other hand,
the chance of double errors is small (but certainly not zero). Ideally, we would like
to check for all possible errors but, given the tight resource constraints of embedded
systems, we have based our choice of an ED scheme on a trade-off between reliability
levels and implementation costs. Besides, significant work has already been done in
the field of high-performance, resource-relaxed systems [Kumar and Aggarwal 2006;
Purohit et al. 2010; Slayman 2005]. Therefore, we focus on both error coverage and
costs of the following schemes:

—Berger check prediction [Gorshe and Bose 1996; Lo et al. 1992];
—Bose-Lin check prediction [Gorshe and Bose 1996; Mitra and McCluskey 2000];
—parity (or modulo-2) checking [Sellers et al. 1968; Hsiao and Sellers 1963]; and
—residue (or modulo-3) checking [Sellers et al. 1968; Langdon and Tang 1970].

Whether an ED scheme is eligible for implementation in the ScAU depends on two
factors: first, its cost should be acceptable, and second, it should be compatible with
the scalability property. Since the ScAU is subdivided into two adder segments (placed
sequentially during normal operation mode), an identical instance of the ED scheme can
be applied to each of the segments independently. However, achieving fault secureness
for single errors in the ScAU as a whole is difficult in case of two independent instances
of ED, as will be explained later (see Section 6.4).

5.1. Berger and Bose-Lin Check Prediction

Berger check prediction (BCP) offers a high fault coverage, since it covers single and
double arithmetic errors, as well as all unidirectional errors.3 However, BCP is not
suitable for implementation in low-power and low-area embedded systems, since the
area cost is at least close to that of full hardware duplication (if not costlier).

Besides, the area cost of Bose-Lin check prediction (BLCP) is reported to be (pro-
hibitively) high, but [Mitra and McCluskey 2000] do not mention how many code bits
they utilize. However, since [Gorshe and Bose 1996] report that in a 16-bit adder with
2 Bose-Lin code bits (capable of detecting single arithmetic errors, and double unidi-
rectional errors) the area cost is significantly lower than that of utilizing BCP, BLCP
(with a limited number of code bits) ought to be cheaper than full hardware duplica-
tion. Implementation and analysis are required to provide an answer, since it cannot
be found in the literature. It is highly unlikely, though, that BLCP will ever be cheaper
than parity checking (to be discussed next). After all, unlike parity checking, BLCP is
designed for detecting multiple errors and requires at least two check bits. Still, BLCP
might be an interesting technique when one requires a (slightly) higher error coverage
than parity or residue checking.4

2A single error causes a faulty single-bit value. Multiple errors are two or more single errors manifesting
simultaneously. Double errors are the particular case of two single errors.
3Unidirectional errors cause either ones to flip into zeroes or zeroes into ones. Such errors typically originate
in asymmetric communication channels.
4Further research could elucidate the exact costs of Bose-Lin coding in comparison to other ED schemes.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:15

5.2. Parity and Residue Checking

Having dismissed the Berger and Bose-Lin check-prediction schemes, we move now
to the parity- and residue-checking techniques. Based on the literature, both seem
interesting ED techniques for implementation in the ScAU. The fault coverage of the
schemes is identical: both schemes are fault-secure for single errors and cover 50%
of all double errors (not necessarily the same 50%). However, it is difficult to decide
which technique is most suitable for integration in the ScAU. In the literature, parity
checking is mentioned as cheaper than residue checking, but Langdon and Tang [1970]
prove otherwise, under certain conditions.

According to Mitra and McCluskey [2000], residue checking is never economical un-
less the operands are already provided along with the residue check bits. This is a
consequence of the generation of check bits: generating residue check bits (for predic-
tion) is considerably more expensive than generating parity bits [Langdon and Tang
1970; Mitra and McCluskey 2000]. However, Langdon and Tang [1970] agree that
residue checking is cheaper than parity checking as long as the operands are already
provided along with the check bits.

A closer look shows that Langdon and Tang [1970] have utilized a CLA and a high-
speed, parity-prediction circuit. The circuit is employed to avoid unnecessary delays by
the ED logic [Sellers et al. 1968]. Since the predicted parity is available considerably
later than the result, this affects the adder’s throughput. Ideally, the result and the
predicted parity should be available at the same moment in time. However, high-speed
parity prediction increases the costs of the ED scheme significantly. On the contrary, if
high performance is not required, standard-speed parity prediction can be implemented
in which case residue checking becomes more costly. Langdon and Tang [1970] do not
explicitly mention this.

As already mentioned, generating residues inside the AU is not efficient. This implies
that there must be reuse for the residue check bits for other error-checking purposes
in the architecture as well, apart from the AU. When an architecture contains, for
example, multiple adders/subtracters, a multiplier and a divider, residue checking can
preferably be employed to check all these units. Residue checking can also be employed
to protect data transfers and memories. It is possible to modify the residue checker to
check logical operations as well, but this requires additional hardware. What is more,
this approach makes the separation of the AU and logical unit (LU) impossible. This is
undesirable if long sequences of logical operations occur frequently. Moreover, checking
memories and data transfers by parity prediction is more efficient since only one parity
bit per data word is required.

To summarize, residue checking can be cheaper than parity checking for larger, fast
adders (provided that the check bits are already present and that the architecture can
use the check bits for more purposes than just the adder, for instance, when also a
multiplier is present in the architecture). However, in most situations parity checking
is to be preferred over residue checking, when the two major drawbacks of the scheme
mentioned above are considered. For this reason, a residue-checked AU was abandoned
in this study; a parity-prediction scheme has been implemented and compared against
the previously mentioned hardware-replication techniques.

In general, if a higher degree of error detection is required (higher than fault-secure
for single errors and 50% coverage of double errors), residue checking becomes attrac-
tive. Note that area and power grow significantly when the modulus is increased (the
overhead scales linearly with the amount of check bits utilized). We believe, however,
that despite their high cost, the very high fault coverage of the TMR or QMR(-RAS)
schemes would probably make them better choices, when a higher degree of error
detection is demanded.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:16 D. P. Riemens et al.

5.3. Parity-Prediction-Scheme Comparison

There exist several parity-prediction designs which are fault-secure for single errors.
Two of them will be discussed here. These two schemes are chosen since they bear the
highest potential in terms of low power consumption, low-area, and reliability.

5.3.1. Duplicated-Carry Scheme. Any parity-prediction scheme for adders contains the
following parts:

—parity (PA and PB) generators for the operands (XOR-trees);
—parity (PC) generator for the internal carries;
—parity (PS) generator for the parity of the sum; and
—predictor/comparator, which requires PA, PB, and PC to predict PS and compare it

with the real PS, and signal an error on mismatch.

As established in Section 3.4, carry errors always manifest as multiple errors of even
number. Therefore, the parity-prediction scheme would normally not be able to detect
these types. [Sellers et al. 1968] proposed a parity-prediction scheme with duplicated-
carry circuits which is fault-secure and is also covering all carry errors.

When the carry circuit of every full-adder is duplicated, it is possible to compare the
carry outputs of the full adder and the duplicated-carry circuit. Since the aim is fault
secureness for single errors, only one carry circuit is assumed to be erroneous at a time.
When the compare signals are fed to the checker, we can detect single carry errors since
the maximum number of detected carry-circuit errors is one, and, thus, odd. [Sellers
et al. 1968] called this scheme “Duplicate carry with parity check I”.

In fact, the scheme can be simplified by avoiding the actual comparison between the
‘normal’ carries and duplicated carries. It is sufficient to generate parity PC based on
the duplicated carries (instead of the normal ones) in order to achieve the fault-secure
property. In case of a carry error, the parity of the duplicated carry PC,d always contains
one error less than PC . Furthermore, the number of errors in the sum S is always equal
to the number of errors in PC (see Section 3.4). This makes the error detectable. This
scheme is called “Duplicate carry with parity check II”, Figure 3. Note that the PA/PB
parity generators are not shown. The ODD circuit implements the checker, PS, and PC
generator all in one. The implementation is an n-input XOR; if the number of 1’s at the
inputs is even, the output is 0, otherwise it is 1.

5.3.2. Carry-Dependent Sum Adder Scheme. The parity-prediction scheme based on the
carry-dependent sum adder (CDSA) was proposed by [Hsiao and Sellers 1963; Sellers
et al. 1968]. The most elementary distinction with the previous scheme is that the carry
circuits are not duplicated. If an error in carry cn causes an error in cn+q, then it also
causes an error in subsequent cn+1, cn+2, . . . , cn+q−1. All carry errors lead to (successive)
erroneous sum results as well: the results sn+1, . . . , sn+q+1 form an error too. Since carry
errors always cause an even number of errors (which makes them undetectable), in the
CDSA scheme the full-adder cells are modified in such a way that this is no longer the
case. The idea is to make sure that when the error occurs in cn, also sn is erroneous. If
that can be done, sn, . . . , sn+q+1 is also faulty, having one error more than before, turning
the total amount of sum and carry errors into an odd number. A carry-dependent sum
full-adder cell is depicted in Figure 4. The checker can be implemented by an ODD
circuit, similar to the one shown in Figure 3. A complete implementation of the CDSA
scheme is shown in Figure 7.

5.4. ScAU ED-Scheme Selection

The choice between duplicated-carry and CDSA schemes will be based on costs, since
the fault coverage of both schemes is equal. In the CDSA scheme, the full-adder cells

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:17

Fig. 3. Adder with duplicated carries - Addendum
II [Sellers et al. 1968]. Top: 4-bit adder chain
with carry-duplication modules. Bottom: Input-parity,
duplicated-carry and sum bits are fed to an ODD de-
tector circuit which outputs ‘1’ on error.

Fig. 4. Single-bit slice of carry-dependent
sum full-adder [Hsiao and Sellers 1963].

are more complex, but the carry circuits are no longer duplicated. However, it is to be
expected that CDSA costs are lower. In the literature, however, no comparison between
the two parity schemes could be found. Therefore, both schemes were implemented,
synthesized and carefully analyzed.

Synthesis provides us with the expected information: the parity-prediction scheme
based on the CDSA is cheaper than the one based on duplicated carries. The CDSA
scheme requires 5.0% less area and 5.3% less power. The CDSA scheme does, how-
ever, have a longer delay than the duplicated-carry scheme. This is because the carry-
dependent full-adders are more complex and, consequently, slightly slower. For exam-
ple, the 16-bit PC-DAU-RAS design implemented with the duplicated-carry scheme is
11.5% faster than the same design implemented with CDSA.

It depends on the targeted application which ED scheme is best-suited for the ScAU.
We intend to employ the ScAU in the SiMS (Smart Implantable Medical Systems) micro
architecture. SiMS is a research project aiming at biomedical microelectronic devices
fully implanted to the human body. Obviously, within the SiMS context reliability is
crucial. On the other hand, as explained in [Strydis et al. 2006], the SiMS micro-
architecture is extremely minimalistic and power and area budgets are very tight.
Oftentimes, increasing reliability might lead to intolerable power and area. So, also
for highly mission-critical devices such as biomedical implants, there is a trade-off
between reliability and cost.

We consider BCP and BLCP not suitable for ScAU implementation, because of the
high costs. Also, residue checking is not particularly interesting: the SiMS architecture
has only one AU, and no multiplier or divider. Thus, apart from the ScAU, there is no
reuse for the residue check bits, making it inefficient.

The decision was made to implement CDSA parity checking and have the design
fault-secure for single errors only. We believe this is justifiable because—as established
earlier—single errors occur much more frequently than errors of higher multiplicities.
The extra protection against double or even triple errors does not add significantly to
the probability of detecting errors. What is more, to cope with the chance of multiple
errors within the SiMS context, the intention is to periodically run online tests with
a set of customized test vectors to check the AU [Seepers et al. 2012]. This way, some
multiple errors may not be covered by the ED-scheme, but ultimately they will be
captured by the on-line testing.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:18 D. P. Riemens et al.

The details about how the on-line self-tests are implemented in the SiMS microar-
chitecture can be found in Seepers et al. [2012]. On-line testing is performed in order
to detect soft faults by executing the same instruction twice and comparing the results.
If the results differ, the pipeline is flushed (thus, no faulty instructions are committed).
This testing method complements the ScAU. The ScAU is designed in such a way that
it does not discriminate between hard and soft faults. Since soft faults occur far more
often than hard faults, it would be inefficient to shut down a segment of the ScAU based
on a single occurring soft fault. In order to detect hard faults, an architecture-specific
sequence of instructions is executed and the results are compared to an expected value.
If a mismatch is found, it can be determined which part of the architecture (e.g., one
of the ScAU segments) has succumbed to hard faults, based on the mismatched value.
This value is prestored in a register at compile-time but it may as well be stored
elsewhere, for instance, in the data memory.

6. PARITY-CHECKED SCAU

In the previous section we selected the most suitable ED scheme for our ScAU. We can,
now, introduce the Parity-Checked ScAU (PC-ScAU), an extension to the ScAU design.

6.1. Implementation of the PC-ScAU

In the PC-ScAU, both AU segments are equipped with parity prediction and an EC-
scheme is implemented, which disables the damaged AU segment when an error is
detected, downscales the structure, and proceeds with the computation using the re-
maining AU segment. We assume that the parity bits are generated at an early stage
in the pipeline, like it was assumed for the PC-DAU-RAS. Parity bits generated for
16-bit operands are useless when the decision is made to check the upper and lower
byte independently. So, either (i) two check digits per operand must be generated (one
for the lower-order byte Plow and one for the higher-order byte Phigh), or (ii) Plow and
Phigh must be derived from the 16-bit check digit P.

For option (i), the so-called split-parity, Plow and Phigh are generated early in the
pipeline and propagated all the way to the AU stage, which means that each pipeline
register must have extra room for two parity bits instead of one. Parity checkers in
the processor needing the parity of the full 16-bit operand P, can easily compute it by
XOR-ing Plow and Phigh which results in extra overhead across various pipeline stages.

Option (ii), where Plow and Phigh are derived from P, would require an eight-bit parity
generator placed locally in the AU stage to generate Plow. Then, Phigh can be computed
by XOR-ing P and Plow. Also, extra overhead is present in this case but three flip-flops
(two at the input, one at the output) can be saved since the pipeline registers are
incorporated in the PC-ScAU design. This solution increases AU costs.

Implementation and synthesis of both options has verified that option (ii) is indeed
slightly more expensive in terms of power (+0.8%) and area (+3.7%), from the AU
standpoint. Although option (i) is more expensive when the complete pipeline is con-
sidered, we have decided to implement—without loss of generality—option (i) here for
maintaining fairness in our comparisons with the rest of the AU designs5.

The schematics of the PC-ScAU design are depicted in Figure 5. All components
related to ED/EC are displayed in green (dark gray when seen in grayscale). The split-
parity bits at the inputs are fed to multiplexers. In case a segment is shut down, the
parity bits can be rerouted this way. Pr,h and Pr,l represent the split-parity bits of the
result. The FSM of the EC-controller (error-correcting controller) is depicted in Figure 6.
The main task of the EC-controller is to reconfigure (downscale) the PC-ScAU when
it receives an error notification from one of the parity checkers. The cycle-controller

5Further research is needed to find the cost of option (i) for the pipeline of different processor organizations.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:19

Fig. 5. The PC-ScAU (2×8-bit instance) with ED/EC enhancements highlighted.

Fig. 6. FSM of the EC-controller. Fig. 7. The parity-checked AU (CDSA scheme).

(which keeps track of the current cycle) will be notified depending on whether and
how the ScAU is reconfigured. Both the EC-controller and the cycle-controller steer the
various multiplexers, tri-state buffers, etc. in the design. The internal circuitry of the
8-bit parity-checked segments is depicted in Figure 7. Px and Py represent the input
parity bits and Pz the output parity. Note that the characteristics of the checker in
principle does not differ from the parity generators (generating Pz and Pc): those are
all XOR trees called ODD circuits.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:20 D. P. Riemens et al.

Table VIII. Synthesis results of AU for different ED/EC schemes. Best
candidates per result category are in bold.

Total Dynamic Static Delay
ED/EC scheme Area Power Power Power

[units] [μW] [μW] [μW] [ns]
TMR 3,380 51.48 47.88 3.60 3.67
QMR 3,842 58.76 54.38 4.38 3.34
QMR-RAS 4,308 45.88 40.97 4.91 3.73
PC-DAU-RAS 3,435 37.88 34.18 3.70 4.75
PC-ScAU (nm) 2,884 40.64 34.47 3.17 4.18
PC-ScAU (dm) 2,884 29.22 26.00 3.22 <4.18

6.2. Implementation of Reference Designs

Our fault-tolerant PC-ScAU will be compared to a number of fault-tolerant AUs:

—AU with Triple Modular Redundancy (TMR);
—AU with Quadruple Modular Redundancy (QMR);
—AU with QMR, with redundant adder shutdown (QMR-RAS); and
—duplicated AU with parity check and redundant adder shutdown (PC-DAU-RAS).

As established earlier, the QMR and TMR have a high fault coverage (capable of
detecting all errors of any multiplicity, except common-mode errors) but very high
costs. Even though QMR and TMR schemes are typically too costly for implementation
in a micro-architecture with very low-power and low-area budgets, the decision was
made to implement these schemes for a number of reasons. One reason is to use them
as reference points for comparisons with other ED/EC designs. Another less obvious
reason for including the QMR is because the typical design can be optimized for lower
power consumption and, thus, offer an additional interesting comparison with the
proposed PC-ScAU. As explained in Section 3, the QMR contains two Self-Checking
Adders (SCAs), both simultaneously active. There is, however, no need for both SCAs
to be active simultaneously. The design is, then, modified in such a way that only one
SCA is active at a given time. When the active SCA detects an error, it is shut down and
the nonactive SCA is activated. This modification will increase the scheme area but
we are primarily interested in its power savings. Note that this modified QMR scheme
(QMR-RAS), is no longer an error-masking scheme. Since the failing component is shut
down, a new component is activated and the data path is reconfigured, this scheme is
now based on repair/reconfiguration.

The last and most important reference design included in our comparisons is the
DAU-RAS. This design is built with two AUs, each checked by CDSA-based parity
prediction. Also, this design is power-optimized (based on repair/reconfiguration): only
one AU is active at a time (thus the RAS suffix). The ScAU is also checked by parity
prediction based on the CDSA scheme, now called the PC-ScAU.

6.3. Synthesis Results and Evaluation

After describing all designs in VHDL, they were synthesized and analyzed for area,
power and delay at 20 MHz which is a realistic system frequency for the SiMS archi-
tecture. The SiMS architecture is 16-bit wide; therefore, without loss of generality, we
implemented 16-bit instances of the ScAU and the reference designs. Based on our
previous analysis in Section 3.3, the RCA appears to be the most suitable adder for our
specific purpose and its speed in 90-nm CMOS will most certainly be high enough for
SiMS. The synthesis results are shown in Table VIII and Figure 8.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:21

Fig. 8. The area, delay and power requirements of the AUs for different ED/EC schemes.

Figure 8 reveals the QMR and TMR schemes to perform far worse than the rest
when power and area costs are of interest. These schemes are, however, the fastest.
The QMR-RAS, optimized for power, does indeed result in significant power savings
(−22%) over QMR. This makes the scheme, in terms of power, even more attractive
than the TMR. The area cost is, however, nonnegligible (12% higher compared to QMR,
which had a very high area cost to begin with). Even so, for scenarios that require
multiple-error detection at a relatively low power cost, the QMR-RAS is a suitable
candidate, as long as the high area cost can be tolerated. For the currently targeted
architectures, allowing very limited power and area budgets, the QMR-RAS is obviously
not an option. Thus, resorting to cheaper error-detection codes is necessary when area
budgets are very tight, since all ED-schemes with full hardware replication (QMR,
TMR) incur high area costs.

The PC-ScAU shows interesting trends. Its critical-path delay is shorter than that
of the PC-DAU-RAS (−12%), while in Section 4.3, (without ED/EC provisions) exactly
the opposite was the case. Two are the suspected reasons for this counter-intuitive
phenomenon: First, the path through the ED logic is shorter in the PC-ScAU than it
is in the PC-DAU-RAS. The critical path goes through the first 8-bit adder segment,
then—via the carry-out, connecting logic, and carry-in—through the second 8-bit adder
segment and, finally, through the 8-bit parity tree of the sum of the second adder
segment. In the PC-DAU-RAS case, the critical path goes through the 16-bit adder and
then through the 16-bit parity tree of the sum. Obviously, an 8-bit parity tree is faster
than a 16-bit one. Second, the critical path of the PC-DAU-RAS was altered by adding
tri-state buffers for input-gating the add/sub signal. The adder and complementer
cannot perform any useful computations until the add/sub signal has arrived. Since
there is a tri-state buffer present on this path (controlled by the EC-controller), the
path is somewhat lengthened. To summarize, the critical path of the PC-ScAU has
not been lengthened to the same extent as the PC-DAU-RAS by the ED logic, and the
critical path of the PC-DAU-RAS has become longer due to input-gating the add/sub
signal.

On the other hand, the PC-ScAU performs marginally worse in terms of power
than the PC-DAU-RAS (+7%). In Section 4.3, we concluded that the ScAU and DAU
power consumptions (without ED/EC) were very similar at 20MHz. The reason why the
PC-ScAU has a higher power consumption than the PC-DAU-RAS is because of the ad-
ditional multiplexers (multiplexing the split-parity bits), the additional split-parity bit
registers, and the added EC-controller in the PC-ScAU. However, it is noteworthy that,
while the dynamic-power component of the PCScAU is marginally higher than that

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:22 D. P. Riemens et al.

Table IX. Ranking of AUs according to PDA-variant cost metrics. Best candidates are in bold.

PA PD AD PDA P2DA PD2A PDA2 P3DA PD3A PDA3

AU x105 x102 x104 x105 x107 x106 x109 x109 x107 x1013

TMR 1.74 1.89 1.24 6.39 3.29 2.34 2.16 1.69 0.86 0.73
QMR 2.26 1.96 1.28 7.54 4.43 2.52 2.90 2.60 0.84 1.11
QMR-RAS 1.98 1.71 1.61 7.37 3.38 2.75 3.18 1.55 1.03 1.37
PC-DAU-RAS 1.30 1.80 1.63 6.18 2.34 2.94 2.12 0.89 1.39 0.73
PC-ScAU 1.17 1.70 1.21 4.90 1.99 2.05 1.41 0.81 0.86 0.41

Table X. Qualitative comparison between different ED/EC schemes.

Latency/ Instant Energy/
ED/EC scheme Area operation FT Power operation
TMR �/+ + ++ − −
QMR − ++ ++ −− −−
QMR-RAS −− + ++ � �
PC-DAU-RAS �/+ − � ++ ++
PC-ScAU (nm) ++ � −/� + +
PC-ScAU (dm) ++ −− −/� ++ −−

Legend: ++ represents the best, + a good, � a moderate, − a relatively
poor, and −− the least attractive implementation according to a certain
criterion.

of the PC-DAU-RAS (+1%), the static-power component is significantly lower (−14%),
as can be seen in Table VIII. This means that the dynamic component dominates the
static one, thus the net increase in power of the PC-ScAU. However, this also means that
(i) for systems with longer standby periods, the PC-ScAU may well exhibit lower power
needs, and (ii) employing newer technology nodes (e.g. 25 nm) which show comparable
dynamic and static power components will, most probably, give the PC-ScAU a lower
total power budget over the PC-DAU-RAS (and the rest of the reference designs).

Regarding area, the PC-ScAU requires the least amount of transistors, compared to
all ED/EC implementations. So, even though the PC-ScAU performs slightly worse in
terms of power compared to the PC-DAU-RAS, it consumes 16% less area (Table VIII).

Conclusively, the PC-ScAU design behaves excellent in terms of delay and area while
consuming marginally more power than other approaches at 90 nm. As an overview, it
is interesting to validate its efficiency with respect to various PDA-derived metrics. In
Table IX, various established PDA variants are being reported. The first four (columns
1 to 4) are standard with all appearing objectives (power, area and delay) assigned an
equal weight. It depends on the target application whether, for instance, power savings
are of greater significance than area savings. Therefore, to offer more insights on the
different adder designs, extra PDA-variants with higher powers assigned to power,
delay and area are included (columns 5 to 10). Provided that the fault-coverage level
offered by the PC-ScAU is sufficient, we can observe from Table IX that the PC-ScAU
is the best-performing design against all other alternatives in terms of PDA and other
variants. There is a single exception: when delay is raised to the third power (PD3 A),
the PC-ScAU ranks second (together with TMR), losing only to QMR (the fastest design
in our study). Even then, though, the difference is marginal.

As a final contribution, a qualitative overview of all the implemented and studied
fault-tolerant AUs has been compiled in Table X. The table illustrates in a graphical
way all the findings of this work and can be used as a practical ‘cheat sheet’ by fault-
tolerant-AU designers. It essentially shows that the PC-ScAU is the most balanced
design in terms of resources compared to the reference AUs.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:23

6.4. Fault Secureness of the PC-ScAU

As mentioned before, the parity scheme selected for the ScAU makes its two separate
8-bit adder blocks fault-secure for single errors. Nevertheless, when connected together
forming the 16-bit scalable adder, the two 8-bit blocks are not fault-secure for single
errors as observed during the design of the PC-ScAU. This is caused by a small number
of so-called ‘weak spots’ in the error-detection scheme: logic parts along the data path
that are not checked for errors. The parity-prediction scheme assumes that the carry
input of the adders is correct. However, the carry input (which is the add/subtract
signal) is not connected directly to the carry inputs of the two 8-bit adders. Because
of the scalable nature of the scheme, the carry inputs have additional multiplexers
and latches attached to these inputs. When, for example, a stuck-at fault occurs at
the output of such a multiplexer or latch, the carry input is erroneous and also the
computation will be incorrect, which is not detected by the ED scheme. There are two
methods to overcome this problem.

(1) Since the self-testing property of the 16-bit adder is not compromised by the addi-
tional logic, an error is by definition still detectable. In the SiMS micro-architecture,
sufficient idle time is available to test the AU on a regular basis using a predeter-
mined set of test vectors to test the entire ScAU for errors, as mentioned earlier, in
Section 5.4.

(2) The logic components that are not covered by the parity-prediction scheme can be
duplicated and the outputs can, for instance, be compared using a simple XOR
gate. The outputs of the XOR gates can be considered as additional error signals,
which should be represented by the existing error signal. Obviously, this comes at a
(small) price. It is estimated that area will increase by 60 units (2.1%) and power by
0.5 μW (1.2%). By implementing this method, the fault-secure property for single
errors of the 16-bit ScAU is achieved.

Which method is viable ultimately depends on the demands of the application and
the exact power/area budgets. If an incorrect result is intolerable at all times, method
(2) is the only legitimate option (if higher cost can be tolerated), since method (1) might
pass incorrect results in between self-tests. We decided to opt for method (1). The
reason for this is that the unchecked logic that forms the ‘weak spots’ in the ED is
only a tiny fraction of the overall logic. Statistically speaking, the chance that an error
occurs in these parts is small. Further, an additional increase in power consumption of
the PC-ScAU would be highly undesirable. An additional 0.5 μW will increase the gap
in power consumption between the PC-DAU-RAS and the PC-ScAU further.

6.5. Power Consumption of the PC-ScAU

As shown before, the PC-ScAU is capable of significant area and delay savings when
compared to the PC-DAU-RAS. The power usage of the PC-ScAU and PC-DAU-RAS are
very close with the PC-ScAU consuming slightly more. There are, however, situations
where the power consumption of the PC-ScAU might become lower than that of the
PC-DAU-RAS.

(1) When the adder is wide (e.g., 32 bits). While the adder itself scales linearly with the
word size, the largest part of the control logic of the PC-ScAU remains unchanged.
Thus, the overhead of the PC-ScAU becomes proportionally lower.

(2) When the adder needs to operate at high frequencies or a high throughput is
desired. Then, a faster adder is required (e.g., CLA). Since fast adders are larger
and consume more power, the overhead of the ScAU lowers by proportion.

(3) The total-power numbers obtained for the PC-ScAU and the PC-DAU-RAS are close.
However, the PC-ScAU is considerably smaller in size than that the PC-DAU-RAS

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:24 D. P. Riemens et al.

and also exhibits a much smaller static-power component. Due to these two reasons,
it is very well possible that, for a more recent and low-power technology node, the
PC-ScAU will outperform the PC-DAU-RAS in terms of power.

All three points indicate that the 16-bit, RCA-based instance of the PC-ScAU used in
our evaluation is, in many ways, a worst-case design point. By implementing a wider
datapath, a faster adder and/or a more recent technology node in the future, the PC-
ScAU family of adders is expected to narrow or even bridge the power gap to the other
designs.

7. CONCLUSIONS

Instead of coarse-grain hardware duplication, we presented a novel design of an arith-
metic unit (AU) containing a single adder with scalable size. The goal of this approach
is to save power and/or area compared to regular, nonscalable, fault-tolerant designs.
In normal mode, the ScAU performs one operation per cycle and utilizes the full adder
width. The adder itself is divided into two segments. Once an error has been detected
in one segment, the ScAU will disable it, reconfigure the data path, and continue with
the remaining segment. When in such mode, the ScAU cycle count will change from
one to two cycles per operation. The throughput will be compromised, however the
computational precision will be preserved. A Precision-Scalable variant of the ScAU
(PScAU) was, also, introduced in order to provide a solution for systems where the AU
throughput is critical. The design is similar, however, in case of an error, the precision
is now halved in order to preserve the throughput. After downscaling the PScAU, it will
still be able to perform calculations within a single cycle, but with a reduced precision.
The PScAU is also interesting for dynamic thermal management. Since the power con-
sumption in downscaled mode is lower, one could decide to lower precision once critical
chip temperature is approached.

A number of error-detection (ED) schemes were explored to investigate whether
they are applicable within low-power and low-area embedded systems. A thorough
comparison between residue checking and two types of parity checking was presented.
In combination with regular self-checks at the software level, the decision was made
to implement parity checking based on the Carry-Dependent-Sum-Adder scheme.

The ScAU, PCScAU, PScAU and several reference designs have been implemented,
synthesized, and characterized in 90-nm UMC technology. The power consumption of
the parity-checked ScAU (PC-ScAU) is low and we gain significant area savings com-
pared to the cheapest reference design (a fault-tolerant arithmetic unit based on hard-
ware replication, utilizing the same ED scheme). The PC-ScAU has a slightly higher
power consumption (+7%), but a significant lower area (−16%) and delay (−12%),
which results in a PDA product that is almost 21% better. Overall, the PC-ScAU ranks
first in 9 out of 10 PDA-variant metrics, second to QMR only in the case of PD3 A.

ACKNOWLEDGMENTS

We would like to acknowledge Daniele Ludovici, Ioannis Sourdis, George Stefanakis, and Arjan van Genderen
for their precious help.

REFERENCES

R. Amirtharajah, Thucydides Xanthopoulos, and A. Chandrakasan. 1999. Power scalable processing using
distributed arithmetic. In Proceedings of the International Symposium on Low-Power Electronics and
Design. ACM, 170–175.

S. Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor vari-
ability and degradation. IEEE Micro 25, 6, 10–16.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

Towards Scalable Arithmetic Units with Graceful Degradation 87:25

T. K. Callaway and E. E. Swartzlander. 1992. Optimizing arithmetic elements for signal processing. In
Proceedings of the Workshop on VLSI Sig. Processing. 91–100.

G.-C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano. 2006. Fault Localization, error correction,
and graceful degradation in Radix 2 signed digit-based adders. IEEE Trans. Comput. 55, 534–540.

R. A. Davis. 1965. A checking arithmetic unit. In Proceedings of the American Federation of Information
Processing Societies National Semi-Annual Computer Conference. ACM, 705–713.

S. S. Gorshe and B. Bose. 1996. A self-checking ALU design with efficient codes. In Proceedings of the IEEE
VLSI Test Symposium. 157–161.

P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S. Hareland, P. Armstrong,
and S. Borkar. 2003. Neutron soft error rate measurements in a 90-nm CMOS process and scaling trends
in SRAM from 0.25-μm to 90-nm generation. In IEEE International Electron Devices Meeting (IEDM’03)
Technical Digest. 21.5.1–21.5.4.

J. L. Hennessy and D. A. Patterson. 2012. Computer Architecture: A Quantitative Approach Morgan
Kaufmann Publishers Inc.

M. Y. Hsiao and F. F. Sellers. 1963. The carry-dependent sum adder. IEEE Trans. Electronic Computers 12,
3, 265–268.

ITRS. 2011. International Technology Roadmap for Semiconductors. www.itrs.net/Links/2011ITRS/Home
2011.htm. (2011).

A. Iyer and D. Marculescu. 2001. Power aware microarchitecture resource scaling. In Proceedings of the
Conference and Exhibition on Design, Automation and Test in Europe (DATE’01). IEEE, 190–196.

S. Kaxiras. 2008. Computer Architecture Techniques for Power-Efficiency. Morgan and Claypool Publishers.
C. Khedhiri, M. Karmani, B. Hamdi, and K. L. Man. 2012. A fault tolerant adder based on alternative

computation. Int. J. Design, Analysis Tools Integrated Circuits Systems 3, 14–18.
S. Kumar and A. Aggarwal. 2006. Reducing resource redundancy for concurrent error detection techniques in

high performance microprocessors. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA’06). 212–221.

Sumeet Kumar, Prateek Pujara, and Aneesh Aggarwal. 2005. Bit-sliced datapath for energy-efficient high
performance microprocessors. In Power-Aware Computer Systems, Lecture Notes in Computer Science,
vol. 3471, Springer, 30–45.

Eren Kursun, Glenn Reinman, Suleyman Sair, Anahita Shayesteh, and Tim Sherwood. 2005. Low-overhead
core swapping for thermal management. In Power-Aware Computer Systems, Lecture Notes in Computer
Science, vol. 3471, Springer, 46–60.

G. G. Langdon and C. K. Tang. 1970. Concurrent error detection for group look-ahead binary adders. IBM J.
Res. Dev. 14, 5, 563–573.

H. Lee. 2005. Power-aware scalable pipelined booth multiplier. IEICE Trans. 88, 11, 3230–3234.
Ting-Wei Lin, Ming-Chung Lee, Fang-Ju Lin, and Herming Chiueh. 2005. A low power ALU cluster design for

media streaming architecture. In Proceedings of the 48th Midwest Symposium on Circuits and Systems.
51–54.

J. C. Lo, S. Thanawastien, T. R.N. Rao, and M. Nicolaidis. 1992. An SFS Berger check prediction ALU and
its application to self-checking processor designs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
11, 4, 525–540.

S. Mitra and E. J. McCluskey. 2000. Which concurrent error detection scheme to choose? In Proceedings of
the International Test Conference. 985–994.

J. Monteiro, S Devadas, P. Ashar, and A. Mauskar. 1996. Scheduling techniques to enable power management.
In Proceedings of the 33rd IEEE/ACM Design Automation Conference (DAC’96). 349–352.

T. Mudge. 2001. Power: A first-class architectural design constraint. Computer 34, 4, 52–58.
C. Nagendra, M.J. Irwin, and R.M. Owens. 1996. Area-time-power tradeoffs in parallel adders. IEEE Trans.

Circuits Syst. Express Briefs 43, 10, 689–702.
A. Namazi, Y. Sedaghat, S.G. Miremadi, and A. Ejlali. 2009. A low-cost fault-tolerant technique for

Carry Look-Ahead adder. In Proceedings of the 15th IEEE International On-Line Testing Symposium
(IOLTS’09). 217–222.

B. Parhami. 2000. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press.
S. Peng and R. Manohar. 2005. Fault tolerant asynchronous adder through dynamic self-reconfiguration.

In Proceedings of the IEEE International Conference on Computer Design (ICCD’05). IEEE, 171–
179.

O. A. Pfänder, R. Nopper, H.-J. Pfleiderer, S. Zhou, and A. Bermak. 2008. Comparison of reconfigurable
structures for flexible word-length multiplication. Adv Radio Sci. 6, 113–118.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

87:26 D. P. Riemens et al.

S. Purohit, S.R. Chalamalasetti, and M. Margala. 2010. Low overhead soft error detection and correction
scheme for reconfigurable pipelined data paths. In Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems. 59–65.

J. M. Rabaey and M. Pedram. 1996. Low Power Design Methodologies. Kluwer Academic Publishers.
R. M. Seepers, C. Strydis, and G. N. Gaydadjiev. 2012. Architecture-level fault-tolerance for biomedical

implants. In Proceedings of the International Conference on Embedded Computer Systems. 104–112.
S. Segars. 1997. ARM7TDMI power consumption. IEEE Micro 17, 4, 12–19.
Frederick F. Sellers, Muyue Xiao, and Leroy W. Bearnson. 1968. Error Detecting Logic for Digital Computers.

McGraw-Hill.
A. Shrivastava, D. Kannan, S. Bhardwaj, and S. Vrudhula. 2010. Reducing functional unit power consump-

tion and its variation using leakage sensors. IEEE Trans. VLSI Syst. 18, 6, 988–997.
C. W. Slayman. 2005. Cache and memory error detection, correction, and reduction techniques for terrestrial

servers and workstations. IEEE Trans. Device Mater. Reliab. 5, 3, 397–404.
C. Strydis. 2011. Universal processor architecture for biomedical implants: The SiMS Project. Ph.D. disser-

tation, Delft University of Technology, Delft, The Netherlands.
Christos Strydis, Georgi N. Gaydadjiev, and Stamatis Vassiliadis. 2006. A new digital architecture for reliable,

ultra-low-power systems. In Proceedings of the 17th Annual Workshop on Circuits, Systems and Signal
Processing. 350–355.

V. Tiwari, S. Malik, and P. Ashar. 1998. Guarded evaluation: pushing power management to logic synthe-
sis/design. IEEE Trans. Comput-aided Des. Integr. Circuits Syst. 17, 10, 1051–1060.

W. J. Townsend, J. A. Abraham, and E. E. Swartzlander. 2003. Quadruple Time redundancy adders. In
Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.
250–256.

M. Vratonjic, B. R. Zeydel, and V. G. Oklobdzija. 2005. Low- and ultra low-power arithmetic units: design
and comparison. in Proceedings of the IEEE International Conference on Computer Design. 249–252.

Received February 2013; revised May 2013; accepted June 2013

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 87, Publication date: February 2014.

