
Compiler-Aided Methodology for Low Overhead
On-line Testing

Ghazaleh Nazarian⇤, Robert M. Seepers†, Christos Strydis† and Georgi N. Gaydadjiev‡⇤
⇤ Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
g.nazarian@tudelft.nl

† Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
{r.seepers, c.strydis}@erasmusmc.nl

‡ Dept. of Computer Science and Engineering, Chalmers University of Technology, Rannvagen 6, Goteburg, Sweden
georgig@chalmers.se

Abstract—Reliability is emerging as an important design
criterion in modern systems due to increasing transient fault
rates. Hardware fault-tolerance techniques, commonly used to
address this, introduce high design costs. As alternative, software
Signature-Monitoring (SM) schemes based on compiler assertions
are an efficient method for control-flow-error detection. Existing
SM techniques do not consider application-specific-information
causing unnecessary overheads. In this paper, compile-time
Control-Flow-Graph (CFG) topology analysis is used to place
best-suited assertions at optimal locations of the assembly code to
reduce overheads. Our evaluation with representative workloads
shows fault-coverage increase with overheads close to Assertion-
based Control-Flow Correction (ACFC), the method with lowest
overhead. Compared to ACFC, our technique improves (on
average) fault coverage by 17%, performance overhead by 5%
and power-consumption by 3% with equal code-size overhead.

I. INTRODUCTION

The past decade has witnessed the rapid integration of
embedded processors in a variety of new applications [1]. On
the other hand, the ongoing technology trends of shrinking
feature sizes and increasing chip density made processors
more susceptible to transient faults [2]. Therefore, reliability
becomes a major issue especially for safety-critical embed-
ded systems such as biomedical implants. A large body of
research on hardware optimizations for fault detection and fault
recovery exists, where hardware is replicated [3] or extended
with circuit checkers [4] in order to detect and correct faults.
However, such optimizations are not applicable for off-the-
shelf processors suitable for many systems.

Alternative techniques for run-time fault detection without
special hardware are compile-time software optimizations.
The executable code is instrumented with extra instructions
to detect program’s misbehavior due to hardware transient
faults. Such faults can manifest as data errors or Control-Flow
Errors (CFE). Experiments on the influence of heavy-ion fault
injection on program behavior shows that more than half of
the injected faults cause CFEs [5], hence CFEs deserve special
attention and will be targeted in this study.

A well-known compiler-assisted technique for on-line CFE
detection is Signature Monitoring (SM). In SM, unique signa-
tures are associated with each basic block (branch-free sections
of the code). At compile time, the code is instrumented with
set and test assertions. Set assertions, used in all Basic Blocks

(B-block), calculate and update the runtime signature. Test
assertions, added at predefined program locations, compare
the runtime signature with the associated signatures to verify
correct execution. However, redundant assertions introduce
overheads. Safety-critical systems such as biomedical implants
have extremely low power and memory budgets making high-
overhead methods not applicable. Therefore, reducing SM
overheads with minimal impact on fault coverage is necessary.

Existing SM techniques do not use application-specific
information (e.g., the Control-Flow-Graph (CFG) topology),
thus they often have unnecessary assertions. In this paper,
novel SM method for on-line CFE detection is proposed which
instruments the assembly code based on workload CFG anal-
ysis at compile time. Our method is named Selective-Control-
Flow-Check (SCFC) because, depending on the CFG topology,
a suitable assertion is selected for each B-block. SCFC inserts
the lowest number of assertions with low overheads only at
critical points of the code while preserving acceptable fault
coverage levels. The contributions of this paper are:

• Categorization of existing SM techniques into two
classes to highlight pros and cons of each category;

• New software-based method, without extra hardware;

• On average 17% fault coverage improvement over
Assertion-based Control Flow Correction (ACFC)
with only 2.75% of code-size overhead.

The remainder of this paper is organized as follows: Section II
gives an overview and a categorization of previously proposed
methods and Section III illustrates two methods representing
each category with an example. In Section IV, the targeted
error models are introduced. Section V describes SCFC and
its advantages over other SM methods. In Section VI the
workloads used for experiments, framework for error injection
and the results of our evaluation are presented. Finally, the
conclusions are provided in Section VII.

II. RELATED WORK

One of the major threats to processor reliability are tran-
sient faults which can be detected using redundancy. The
redundancy can be extra hardware, an extra thread or some
additional lines of code in the executed program. Several

978-1-4799-0103-6/13/$31.00 ©2013 IEEE 219

SM METHODS SET ASSERTION TEST ASSERTION CF-PARAMETERS CATEGORY
CFCSS [8] RS = RS � P1i ifRS! = S

i

br error P1i = S
i

� S
pre1 Pred/Succes

RS = (RS � P1i) � P2 P2 =

(
0000 in predecessor 1
S
pre1 � S

pre2 in predecessor 2

ECCA [9] RS = P
i

+ (RS � S
i

) RS =
S

i

RS%S

i

·(RS%2)
P

i

=
Q

S
nxt

Pred/Succes

YACCA [10] RS = (RS & P1i) � P2i If (P3i%RS) error () P1i = S
pre1�̄S

pre2 Pred/Succes
P2i = S

pre1 & (S
pre1�̄S

pre2) � S
i

P3i =
Q

S
pre

CCA [11] and CEDA [12] RS1 = S1i ifRS1! = S1pre error() Pred/Succes
RS2 = S2i ifRS2! = S2i error() not required

ACFC [13] RS = RS ˆ MASK ifRS! = CONST error() not required Path

TABLE I: Set/Test assertions and additional static parameters of signature monitoring methods

B1

B3

B4

Bj

B5

Bk

Bi

B2

P
A

TH
3

P
A

TH
2

P
A

TH
1

B1

B3

B4

Bj

B5

Bk

Bi

B2

SET
TEST

SET

TEST

(a) Path-asserting methods (b) Pred/Succes-asserting methods

B6

SET
TEST

SET
TEST

SET
TEST

SET
TEST

SET
TEST

SET
TEST

Fig. 1: Two categories of SM techniques

hardware-redundancy methods use a watchdog processor, to
compare its results with the main processor [6] [4] and others
propose to replicate only parts of the processor such as
datapath-components [3]. Saxena et al. [7] propose to use
redundant threads for soft-error detection in processors with
hardware support for multi-threading. Most of the above tech-
niques need special hardware which is costly and not available
in many off-the-shelf-processors. In software (compiler-aided)
methods the program code is instrumented with extra instruc-
tions to check execution correctness. Well-known methods are:
EDDI [14] which duplicates the instructions and checks the
consistency between the two versions for data error detection,
and signature-monitoring schemes for CFE detection. Control
flow Correcting Assertion (CCA) [11], ECCA [9], CFCSS [8],
YACCA [10], CEDA [12] and ACFC [13] are all variations of
SM. SWIFT [15] is a hybrid method combining CFCSS for
CFE and EDDI for data error detection.

In this paper, we focus only on signature-monitoring de-
tection schemes. In SM techniques, a unique signature is
assigned statically to each B-block. In addition to the B-
block signatures, there is the Runtime Signature (RS) which is
generated at runtime. The RS value depends on the program’s
execution flow and the visited B-blocks during execution. Set
assertions update the RS with the current B-block signature.
Test assertions check the correctness of the RS content, to
validate execution correctness. Set and Test assertions are
added at specific points of the program (begin/end of B-blocks)
at compile time. We divide SM techniques into two categories
as depicted in Figure 1: (a) Path-asserting: methods which

assert if the control-flow path during the execution is correct
or not. A path consists of two or more B-blocks executed
in an uninterrupted sequence; and (b) Predecessor/Successor-
asserting: methods which assert if the previous (or next) B-
block in the execution flow is the correct predecessor (or
successor). Predecessor/Successor-asserting methods require
more than one assertion per B-block (at least one set and one
test), as shown in Figure1(b). Moreover, in some cases there is
a need to save extra information about predecessors/successors
(e.g., for B-blocks with multiple predecessors/successors);
the so-called Control Flow parameters (CF-parameters). Path-
asserting methods decrease the number of assertions per B-
block (test assertions are needed only in the last B-block
of each path) and do not require saving CF-parameters,
Figure1(a). However, path-asserting methods depend on the
program’s CFG and require symmetric topology as will be
explained in the next section. Predecessor/successor-asserting
is CFG-topology independent.

The most widely used SM schemes are presented in Table
I. The table depicts the set and test assertions, the extra
CF-parameters saved at compile time and the category. The
signature of each B-block is denoted by an “i” subscript
(Si). Predecessor signatures are denoted by “pre” subscripts
(e.g., Spre), and successors signatures are denoted by “nxt”
subscript (e.g., Snxt). CF-parameters stored at compile time
are indicated with “P”.

The number of assertions per B-block and CF-parameters
have significant impact on memory overhead. Moreover, the
number of assertions used per B-block and the assertions com-
plexity determine performance and power overheads. CFCSS,
ECCA, CEDA and YACCA are predecessor/successor-
asserting methods with two or more complex assertions per
B-block and extra CF-parameters. Therefore, these methods
have high overheads. CCA is also a predecessor/successor-
asserting method, but with simple set/test assertions and
no extra CF-parameters. Our hybrid method benefits from
the advantages of each category by using a combination
of assertions from each category in different CFG sections.
Among predecessor/successor-asserting methods with high
fault-coverage, we use CCA assertions since its assertions are
simple and do not require CF-parameters. We use ACFC as
the the only available method with path-assertion.

III. METHOD COMPARISON

In this section ACFC and CCA are explained and compared
using an example. In ACFC one Set assertion is used at the

220

B3

RS=RS^1

B4
RS=RS^8

B5 B6
RS=RS^16 RS=RS^32

if (RS!= 31) error

B1 B2

B0

RS=RS^2RS=RS^2

RS=RS^4

RS= 7
if (RS!= 47) error

B0

B2B1

B3

B4

B6B5

RS=RS^1

RS=RS^2RS=RS^2

RS=RS^4

RS=RS^8

RS=RS^32

if (RS!= 47) error;

RS=RS^16

if (RS!= 31) error;
RS= 7;

(a) Sym. CFG with ACFC assertions

B0

B1

B2

B3

B5B4

(b) Asym. CFG

Fig. 2: Sym. CFG with ACFC assertions and an Asym. CFG

beginning of each B-block, and a Test assertion is used at
the end of each possible control-flow path. Control-flow paths
are guarded by RS. Each B-block in a control-flow path is
represented by one bit in the associated RS. The Set assertion
(shown in Table I) in each B-block sets its corresponding bit
in the RS, by a bitwise XOR between RS and the B-block
MASK. The MASK of a B-block has a value with ”1” at the
bit position corresponding to the B-block and all other bits set
to ”0”. The Test assertion compares the runtime signature value
with the CONST representing error-free control-flow path. The
CONST of a control-flow path has a value with only the bits
corresponding to B-blocks in the control-flow path set to ”1”.
Since the Set assertion uses bitwise XOR, if a B-block is
executed an even number of times, its bit in RS will be reset.
To overcome this, ACFC suggests to test and restore RS at the
end of each loop iteration. RS is restored using the CONST
of the control-flow path before entering the loop.

Figure 2(a) shows the ACFC scheme applied to an example
with simple CFG topology. In the depicted CFG, the possible
paths without considering the in-loop B-blocks are {B0, B1,
B3, B6} and {B0, B2, B3, B6}. ACFC sets the corresponding
bits of RS in each B-block and in the last B-block of the path
(B6) compares RS content with CONST of the path which is
47 (101111’b). It should be noted that B1 and B2 are multi-
path B-blocks that show up in the CFG representing an if-else
program statement. ACFC uses the same RS bit for multi-path
B-blocks (bit #2 in Figure 2), because at runtime only one
of them is executed. The path in the loop is {B4, B5} which
uses the RS 4th and 5th bits. In the last B-block (B5) RS is
compared with 31 (011111’b) and restored with the CONST
value before the loop, which is 7 in our example.

ACFC (a path-asserting method) is designed to be used
only in symmetric CFG topologies. The inefficiency of this
method with asymmetric topologies is explained with an
example. Figure 2(b) shows an asymmetric CFG in which
B1 may or may not be executed at runtime. For this reason,
ACFC can not assert B1 execution by setting its RS bit and
testing RS content at the end of the path. All programs with if
statements without an else part produce asymmetric topologies.
To cope with this problem, the method requires a dummy
else statement to make the CFG symmetric. As a result, this
solution increases the overheads. Moreover, ACFC extracts the

B3

RS1=0;

B4
RS2=4

B5 B6
RS2=5; RS2=6;

B1 B2

B0

RS2=0

RS2=1;

RS2=3

if (RS2 != 6) error

if (RS2 != 0) error

if (RS2 != 1) error if (RS2 != 2) error

if (RS2 != 3) error

if (RS2 != 4) error

if (RS2 != 5) error

RS2=2;

RS1=4;

if (RS1 != 0) errorif (RS1 != 0) error

if (RS1 != 4) errorif (RS1 != 4) error

B0

B2B1

B3

B4

B6B5

 =0;

 =0

=1;

if (!= 0) error

 =2; if (!= 0) errorif (!= 0) error

 =4

 =5; =6;

 =3

if (!= 6) error

if (!= 1) error if (!= 2) error

if (!= 3) error

if (!= 4) error

if (!= 5) error

 =4;

if (!= 4) errorif (!= 4) error

2RS
2RS

2RS
2RS

2RS
2RS

2RS
2RS

2RS
2RS

2RS 2RS
2RS 2RS

1RS

1RS

1RS

1RS

1RS1RS

Fig. 3: CFG with CCA assertions

CFG from and instruments directly the program source-code.
However, the CFG of the program does not remain the same
at different phases of the compilation before the executable
binary is produced. In the majority of cases, the final CFG
topology of the code is asymmetric and more complicated than
the symmetric topologies assumed by ACFC.

Another shortcoming of ACFC is related to loops: At the
end of each loop RS has to be restored with the control-flow-
path value at the loop beginning. As a consequence, a CFE
from a B-block outside the loop to the restore statement at the
end of the loop can not be detected. As an example in Figure
2(a) an erroneous jump from B0 to the last statement of B5
(RS = 7) can not be detected using ACFC.

CCA is the simplest among the predecessor/successor-
asserting methods. Figure 3 depicts the same CFG instru-
mented with CCA assertions. A pair of set RS2 (at the begin-
ning of the B-block) and test RS2 (in the end of the B-block)
guard B-block uninterrupted execution and detect erroneous
jumps to/from mid of the B-block. A pair of set RS1 (in the
end of the predecessor B-block) and test RS1 (at the beginning
of the current B-block) checks the predecessor correctness.
In case inconsistencies are detected an error recovery routine
will be called. CCA requires 4 assertions for almost all B-
blocks, causing significant overheads in terms of performance
and memory. Another shortcoming of CCA is its inability to
detect errors in B-blocks with multiple predecessors.

IV. ERROR MODEL

In this paper, we target Single-Event Upset (SEU) as our
fault model. SEUs are typically caused by electro-magnetic
radiation or wire crosstalk and usually result in single bit
flips in different parts of the system: memory (data or code
segment), buses (data or address), functional units or control
logic, to name a few. Hardware faults lead to software errors. In
this paper, faults refer to malpractices in hardware and errors
refer to the effects caused by those faults in the software. The
effect of SEUs on program instructions can be a change in
instruction’s address, opcode or its operands, which results in
two conceptually different error types:

• Data errors: Faulty change of instruction opcode or
operands (excluding control-flow instructions), will
cause erroneous data in the memory or registers;

221

B0

B1

B2

B0

B1

B2

B0

B1

B2

B0

B1

B3

B2

B4

(a)NoBrChng (b)NoBrChng (c)BrTrgChng (d)BrTrgChng

Fig. 4: Targeted control-flow errors

IRFront-
end

Standard
engines

Reg-alloc,
Code-genLIR

App
source

Target
assembly

Back-end:

SCFC engine

Fig. 5: CoSy framework

• Control-flow errors (CFE): Faults changing the op-
code or operand of control-flow instructions or con-
verting a non-control-flow instruction opcode to a
control flow one causing incorrect execution sequence.

Since CFEs occur often and have a large impact on program
behavior, we target this error type in our study. Figure 4 shows
how CFEs affect program’s execution. NoBrChng are errors
in which a non-branch instruction is changed to a branch
instruction. The consequence of NoBrChng is an erroneous
jump from the middle of a B-block to the end of the same B-
block (Figure 4(a)) or to another B-block in the CFG (Figure
4(b)). In BrTrgChng error type the operand of a branch instruc-
tion is changed. A BrTrgChng error causes an erroneous jump
from the end of a B-block to a random location (Figures 4(c)
and 4(d)). The case when an error cause a branch instruction
change to a non-branch will either behave as BrTrgChng or
will not result in a CFE1.

V. SCFC IMPLEMENTATION

Considering the high number of assertions of
predecessor/successor-asserting methods and the shortcomings
of path-asserting methods with asymmetric CFG topologies,
there is a need for an SM technique with a reasonable number
of assertions which is usable in asymmetric CFG topologies.
In addition, the optimizations should be applied at a point (in
terms of compiler passes) where the final CFG topology is
available. For this reason, we implemented SCFC using the
intermediate representation used by the CoSy back-end (LIR
in Figure 5) which has the CFG of the final assembly code.
In this section, first the development framework is introduced
followed by SCFC explanation and an example using the
CFG of a realistic workload.

A. Framework for compile-time optimizations

CoSy is a modular framework specially developed for
simplifying compiler design and optimization [16]. Figure 5
shows the framework constituted by different modules (so
called engines) responsible for different compilation tasks,

1This will potentially cause a data error not targeted here.

CFG

Loop
Analysis

Set of in-loop
bB-sequences

Branch
Analysis

Set of in-branch
bB-sequences

Num. of
bBs >1

Pred/Secces
Assertions

Path
Assertions

YES NO

Fig. 6: CFG processing and SCFC instrumentation

e.g, register-allocation, scheduling, etc. Additional compiler
optimizations can be implemented as a new engine. The
proposed SCFC optimization is implemented as an engine. In
the compiler generated by CoSy, first the front-end generates
an Intermediate Representation (IR) of the program. After
the IR is processed by a group of optimization engines, the
compiler back-end transforms the IR to Lower-Intermediate-
Representation (LIR). This version is closer to the assembly
code and represents closely the final CFG topology. Therefore,
our SCFC engine manipulates the LIR. Moreover, since the
SCFC engine is added after the scheduler engine, all required
extra assertions will not be relocated or optimized.

B. SCFC optimization

By analysis of a program’s CFG, all available paths
(sequence of two or more B-blocks executed sequentially)
and the lonely-blocks2 are identified. SCFC processes the
workload’s CFG and determines the B-blocks in loops, B-
blocks in different control-flow paths and lonely blocks. SCFC
uses two assertion types based on the CFG analysis. Figure 6
depicts the flowchart of the SCFC algorithm. The algorithm
consists of three steps; (1) loop analysis, (2) branch analysis
and (3) adding assertions. At the first step, B-blocks residing in
each loop are extracted and saved as separate sequences and
B-blocks outside loops in a single sequence. At the second
step, all sequences are processed to extract B-blocks which
are in different paths of the control flow due to conditional
branches. Third, the B-block sequences of the second step are
used to decide on the assertions type required for each B-block.
Path-assertion is applied for B-blocks sequences with lengths
of 2 or more. Predecessor/successor-assertions are used for
all lonely-blocks.

Path-set-assertions are used at the beginning of each
B-block in paths and only one path-test-assertion is re-
quired at the end of the last B-block of the same path.
Predecessor/successor-set-assertions are used for the prede-
cessor B-block of a lonely-block and the corresponding test
assertions are added at all lonely-blocks. The working of the
two SCFC assertion categories is as follows.

2B-blocks that can not be grouped in any path.

222

B0

ori , 0, 1;

B1
ori RS1, 0, 2

sw RS1,mem

B2 B3

B4

B5

ori RS1, RS1, 4 ori RS1, RS1, 8

ori RS2, 0, 3

ori RS1, RS1, 16

lw RS1,mem

cmpneq RE, RS1, 6

cmpneq RE, RS2, 3

cmpneq RE, RS1, 25

B1

B3B2

B4

B0

B5

sw ,mem

ori RS1, 0, 1;
ori , 0, 2

ori , , 8lw ,mem;

ori , 0, 3

ori , , 16
cmpneq RE, , 25

ori , , 4

cmpneq RE, , 6

cmpneq RE, , 3

1RS 1RS

1RS

1RS 1RS 1RS

1RS 1RS
1RS

1RS 1RS
1RS 2RS

2RS

Fig. 7: CFG with SCFC optimization

1) SCFC-Path-assertions: The set assertion is an OR
instruction with an immediate representing the B-
block MASK (ori RS1, 0, MASK). The test assertion
is cmpneq instruction to compare the contents of RS1

with the path CONST (cmpneq RE, RS1, CONST).
RE is a restricted register from the processor register-
file that is used to hold the results of fault detection.

2) SCFC-pred/succes-assertions: We use an OR instruc-
tion as set assertion to set RS2 to the signature
of the B-block (oriRS2, 0, SigB). The test assertion
is an instruction comparing RS2 contents with the
predecessor signature (cmpneqRE,RS2, SigpreB).
If there is an inconsistency RE is updated.

Path-assertions usage is limited to sequences with at least
two B-blocks, because if they are applied to lonely-blocks,
two assertions are used at each B-block which has the same
code-size overhead as predecessor/successor-assertions. While
predecessor/successor-assertions use one runtime signature for
all B-blocks of the routine, path-assertions occupy one bit of
the run-time signature per B-block until the end of the rou-
tine, therefore depending on the number of B-blocks lengthy
runtime signatures can be expected.

Figure 7 shows a subgraph from the Checksum (CSUM)
benchmark CFG instrumented with SCFC assertions. The first
step of CFG processing produces the following B-block se-
quences: {B1, B2} and {B0, B3, B4, B5}. From the sequences
above, the second step of CFG processing generates the
following set of B-block sequences: {B1, B2}, {B0, B3, B5}
and {B4}. B4 is the only lonely-block and is instrumented with
intra-block predecessor/successor-assertions. The intra B-block
predecessor/successor-assertions for B4 are a set assertion (ori
RS2, 0, 3) at the end of the predecessor block (B3) and a
test (cmpneq RE, RS2, 3) in the begin of B4. B-blocks in
sequences {B1, B2} and {B0, B3, B5} are protected using
path-assertions. Path-asserting sets are added to each B-block
of these two paths and path-asserting test is added only in
the two last B-blocks; B2 and B5. {B0, B3, B5} is the
main control-flow path and {B1, B2} is a loop path inside
the main path. Execution flow at B1 can continue to B3
in the main path or can enter into the loop-path. Therefore,
before the execution flow reaches this point, the content of
the path-asserting runtime signature (RS1) should be stored
and retrieved in the next B-block after the loop path. To store
sw RS1,mem instruction in B0 stores RS1 content to memory

and to retrieve lw RS1,mem retrieve RS1 contents after the
loop. RS store and retrieve are needed for while-loop and
nested-if-statement structures. This is due to the fact that these
statements can cause paths that may or may not be accessed
during the execution flow.

Advantages: (1) Since SCFC instruments the program
assembly code, there is no interference with other compiler
optimizations making it more precise than ACFC and CCA
(both working at source-code level). (2) Compared to CCA,
SCFC always reduces the total number of assertions. For
instance for the depicted CFG in Figure 7, CCA adds 17
assertion statements while SCFC uses only 9. (3) Other than
the ACFC method, SCFC does not require restoring RS at loop
boundaries, therefore overheads are reduced. (4) Our method
can instrument programs with symmetric and asymmetric CFG
topologies while ACFC requires symmetric topologies. In the
example CFG of Figure 7, ACFC adds 8 extra statements
(almost equal to SCFC) for set, test and restore of RS, without
guaranteeing correct execution of B4.

Limitations: The result of the comparison in Test as-
sertions are written into a restricted register, reserved for
Test assertions only. We are aware that register-file reduction
slightly increases processor register pressure. This may result
in higher number of load/store instructions due to register
spill to memory. The overheads in terms of power and per-
formance, presented next, include the contribution of these
extra load/store instructions. The fault detection framework
used in this work checks the value of the restricted register
in the simulated traces (our simulator is explained in the
next section), to detect fault occurrences. In practical SCFC
implementations, in case of a fault, a dedicated fault-recovery
routine will be invoked. Fault-recovery techniques, however,
are beyond the scope of this paper.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section the workloads-under-test, our experimental
setup and SCFC simulation results are presented. We evaluate
our proposal and compare it against ACFC and CCA in terms
of performance, code-size and power-consumption overheads
in addition to fault coverage.

A. Workloads

We experimented using a subset of ImpBench [17]. Imp-
Bench is a benchmark suite with four categories of low-
power applications typical for biomedical implants. The three
categories represent generally used applications in embed-
ded biomedical systems: compression, encryption and data-
integrity. Within the compression and encryption categories,
after profiling, programs have been found to exhibit similar
CFG characteristics. Therefore, from each category we have
chosen a single representative benchmark with the smallest
CFG, i.e. FINNISH from compression and RC6 from encryp-
tion. Small CFGs are chosen to reveal the highest overheads of
the methods for each application category. In larger programs,
the overhead of adding assertions is expected to be lower. An
exceptional case is the data-integrity category, in which the two
benchmarks (CRC and CSUM) have very different CFG types.
Therefore, we used both in our experiments. It is important to
note that we have not used programs of the real-application

223

While (cond1)
{…
 while (cond2)
 {...

while (cond3)
{…}

 }
}

B1

B2

B3 B6

B4 B5

B0

B7

(a) 3nlwhile

for (i=0;i<n;i++)
{…
 for (j=0;j<m;j++)
 {...

for (k=0;k<p;k++)
{…}

 }
}

B2

B3

B4

B1

B5

(b) 3nlfor

B0

if(cond1)
{…
 if(cond2) {...}
 else {...}
}
else
{…
 if(cond3) {...}
 else {...}
}

B0

B1 B2

B3 B4

(c) 2nlif

B5 B6

B7 B8

B9

Fig. 8: Control flow dominated test kernels

category, as they are very specific for biomedical embedded
systems only. We also used a set of control-flow dominated
synthetic kernels to investigate the worst-case overheads.

Each synthetic test kernel implements a special CFG
topology case. They are designed to represent a set of CFG
topologies with many nested control statements. Possible state-
ments are do-while, while-do loops, for-loops and if-then-else
constructs. For-loops are a variant of do-while loops with an
initialization statement at the beginning and an increment at
the end, resulting in the same CFG-structures. Therefore, in
our test kernels, we do not consider do-while-loops. Our test
programs are constructed using different combinations of for-
loops, do-while and if-then-else statements.

The maximum nesting level in our test kernels is 3. This
level has enough complexity to evaluate our method while it
still allows running 1000 instances on the simulator (presented
in the next sub-section). For the three control statements and
nesting-level 3, a total of 27 combinations (CFG topologies)
exist. Out of these, we build test programs for the three
topologies that represent the worst-case scenarios (highest
number of required assertions), depicted in Figure 8. 3nlfor has
three nested levels of for-loops where the body of the loops
contains a simple addition or subtraction statement. 3nlwhile
has nested while-loops with simple body statements. 2nlif is
composed of two nested levels of if-then-else statements.

B. Experimental Setup

In our experiments we use an embedded 32-bit RISC
processor. Our method however can be re-targeted to any
arbitrary processor as it modifies only the intermediate code
representation. Workload binaries generated by our customized
compiler are evaluated using Synopsys Processor Designer
cycle-accurate simulator [18]. In what follows, our target
architecture and the error-injection method are described.

Target architecture: Our target architecture is a basic, 32-
bit, five-stage, in-order RISC processor which has, other than
a forwarding unit, no advanced micro-architectural features.
This processor has similar load/store-based ISA as any ARM
processor. The only significant difference is the higher number
of registers of ARM processors. Therefore, the overheads of

90 115 81

22

0.15

4.7

1

33
54 53

8

0.07

1.1

68
50 35

13
4.9 2.4

0.46

0.01

0.1

1

10

100

3nlfor 3nlwhile 2nlif CRC CSUM RC6 Fin

(%)
CCA
SCFC
ACFC

Fig. 9: Performance overheads

the SCFC instrumentation in a standard processor (such as
ARMv7m) are expected to be lower than our target processor.

Error injection: NoBrChng and BrTrgChng errors dis-
cussed in section IV are emulated using a special error-injector
instruction and a Linear-Feedback-Shift-Register. These errors
demonstrate hardware faults effect on the control-flow of the
running program. The special error-injector instruction and
the Linear-Feedback-Shift-Register (LFSR) are implemented
in the simulator. The error-injector instruction is added in the
beginning of the program-under-test along with a random value
(generated by RANDOM linux command) as its operand. The
random value is used as a LFSR seed and determines the
trigger time of the error. After the number of cycles specified
by the trigger time has elapsed, a NoBrChng/BrTrgChng error
is generated. In NoBrChng error, the opcode of a non-branch
instruction is changed to a branch instruction with a random
value as its operand. BrTrgChng error changes the operand
of a branch instruction to a random value. The corresponding
random values for branch operands are generated by the LFSR.
The polynomial used to generate our pseudo random numbers
is: x32 + x31 + x29 + x+ 1 [19].

C. Experimental Results

We investigate static memory (code-size), performance and
power overheads of the SCFC technique for the selected
ImpBench workloads. To study the worst-case overheads for
our method and compare them to those of ACFC and CCA,
we also use the three synthetic test kernels introduced earlier.
Normally, real code contains more than one statement in its
control-statement bodies resulting in lower net overheads due
to adding the extra Test and Set assertions. The performance of
each method is estimated using the total number of required
cycles for completing the program in the simulator. Perfor-
mance and static memory overheads of the three optimization
methods are shown in Figures 9 and 10. The overheads of each
method are calculated with respect to an unprotected (for CF
errors) version of the program.

As expected, the performance and static memory overheads
of SCFC are lower than those of CCA. A peculiar case of
obtained overheads is seen in 3nlfor, CRC, CSUM and RC6
workloads where SCFC has lower overheads than ACFC. For
the 3nlfor kernel the reason is that its CFG topology (depicted
in Figure 8(b)), has only one main control-flow path from the
first B-block to the last one while SCFC adds instructions
for restoring RS only in cases where the control-flow may
diverge from the main path of the execution (if there are
multiple control-flow paths between the first and last B-block).

224

112

132 136

52
38

58

31

54
64

75

25 19 30 23

70
61 48

23 17 16

0

20

40

60

80

100

120

140

3nlfor 3nlwhile 2nlif CRC CSUM RC6 Fin

(%)

CCA
SCFC
ACFC

Fig. 10: Static memory overheads

Instruction Current range[mA] Power range[mW] Power range[mW]
category 0.5µm 0.5µm 90nm

Arith./logic 172-179 567.6-590.7 36.03-37.50
Load 185-192 610.5-633.6 38.76-40.22
Store 169-175 557.7-577.5 35.40-36.66

TABLE II: Power model of the ISA

Therefore, SCFC instructions for restoring RS are not required
in 3nlfor, while ACFC adds reset statements for restoring the
RS value at the end of all loops. As a consequence the imposed
static memory and performance overheads of ACFC in 3nlfor
are bigger than those of SCFC.

Considering all workloads, on average3 SCFC has similar
static memory overhead to ACFC. With respect to perfor-
mance, SCFC has 5% less overhead compared to ACFC, on
average. The main reason for this seemingly unexpected re-
duction in performance overhead is the asymmetric topologies
of some of the benchmarks. More precisely, CRC, CSUM
and RC6 workloads have asymmetric CFGs while ACFC
requires symmetric topologies (as explained in section III).
ACFC adds dummy elses to complement all if-statements and
balance the CFGs. Dummy elses cause extra branches and
impact performance and power results. As a result, for these
benchmarks, ACFC has higher performance overhead than
SCFC. Since CSUM is small, dummy else statements cause
higher overheads.

For estimating the power consumption, we use the same
approach as presented in [20]. The authors there used a
model for calculating power consumption of programs given
by Tiwari et al. in [21]. In this model, for each instruction
category a current-value range is specified. The power of
each category is calculated by multiplying this value with the
supply-voltage (P = I ⇤ V). The numbers reported in [21]
are for 0.5µm technology with 3.3 V supply-voltage. In order
to estimate power consumption in our experimental processor
(with 90nm technology), we scale down the numbers found in
[21]. In Table II we show the numbers for 0.5µm technology
and our projected versions for 90nm technology. The scaling
factor from 0.5µm to 90nm is determined using the dynamic
power consumption (Pdyn = ↵fCV 2) and CMOS transistor
capacitance (C = (✏)S/d) equations. In the former, ↵ is the
activity factor (we assume it is not affected by the technology),
C is the overall switching capacitance, V is the supply voltage
and f is the operating frequency. In the latter equation, ✏ is

3We use median, since data is not normally distributed.

7.3
11.6

1.7

37.4

0.2

11.9

2.4 2.7
1

13.9

0.11

6.4

1.5

5.6
4.9

0.7

14.9
6 7

1.1

0.1

1

10

3nlfor 3nlwhile 2nlif CRC CSUM RC6 Fin

(%)
CCA
SCFC
ACFC

Fig. 11: Power overheads

the dielectric constant of the oxide material, S is the oxide
surface (length multiplied by width) and d is the thickness of
the oxide. Assuming similar oxide material (SiO2) for the two
technologies (constant ✏) and similar gate widths (Wox), the
simplified power scale-down factor becomes:

s =
Pdyn(0.5µm)

Pdyn(90nm)
= (V 2

0.5µm/V 2
90nm)(

L0.5µm

L90nm
)(

d90nm
d0.5µm

)

With typical values for 0.5µm technology of V = 3.3V, L =
0.5µm, d = 8nm and for 90nm technology, V = 1.2V, L =
90nm, d = 3nm the scale-down factor becomes 15.75. By
multiplying the accumulated number of instructions in each
category by the corresponding power-value we have estimated
the overall power consumption of each benchmark for all three
cases under study. The power consumption overhead of each
method is calculated with respect to the base-line version with
no compiler optimizations. For simplicity, we have assumed
that the static power has similar contribution to the total power
consumption for all binaries, optimized and baseline. We are
aware that our estimations are rough, but since we study
the differences between the three methods, we expect that
any offsets in the estimated numbers compensate each other.
Figure 11 depicts the power overheads and shows that SCFC
binaries exhibit lower power overheads than ACFC for the
3nlfor kernel, CRC, CSUM and RC6 benchmarks. The high
power overhead of ACFC for CSUM is due to the asymmetric
topology of CSUM and its relatively small size, as explained
above. On average, SCFC has 3% lower power overhead as
compared to ACFC.

Figure 12 depicts the fault coverage results of 1000 simu-
lation runs for the two error types discussed in section IV. To
determine the fault coverage, we run the benchmarks using
the smallest data sets possible, as the contribution of the
input size with respect to the fault coverage is negligible.
Each bar group shows the results for one error type and
one benchmark. The last bar group depicts the average fault
coverage of each method for all cases. As expected, SCFC
has always higher fault coverage than ACFC. On average, the
fault coverage of SCFC is 17% higher compared to ACFC.
The exceptional case of higher error coverage of SCFC for
CSUM benchmark compared to CCA is due to the peculiar
CFG topology of CSUM. CSUM has two loops containing B-
blocks with multiple predecessors. A significant portion of the
execution time is spent in the for-loops and a high number
of errors are injected in the corresponding B-blocks. However,
since these B-blocks have multiple predecessors, errors are
not captured by CCA. On the contrary, SCFC does cover B-
blocks with multiple predecessors, that results in improved
error coverage for the CSUM.

225

55

69

78
75

97

58
65

60
67

42

72

39

51

60
66

53 56 54.5

37
41

32

42
47

38

26

37 37.5

0

10

20

30

40

50

60

70

80

90

100

NoBrChng /CRC NoBrChng /CSUM NoBrChng /RC6 NoBrChng /Fin BrTrgChng /CRC BrTrgChng /CSUM BrTrgChng /RC6 BrTrgChng /Fin median

(%)

CCA
SCFC
ACFC

Fig. 12: Fault coverage comparison between ACFC, CCA and SCFC for the error set.

VII. CONCLUSIONS

In this paper we presented a novel technique for
application-specific control-flow fault detection. The proposed
SCFC technique is a workload-aware, hybrid combination
of methods from both SM categories: path-asserting and
predecessor/successor-asserting. In SCFC, the program CFG
is analyzed to detect control-flow paths and lonely B-blocks.
B-blocks in the control-flow paths are guarded using the
path-asserting method. Lonely-blocks are instrumented with
predecessor/successor-asserting checks. SCFC has been val-
idated on a simple RISC processor for a set of commonly
used biomedical workloads and three synthetic kernels. The
results of our evaluation show significant overhead reduction
compared to CCA. In respect to ACFC –the method with the
lowest overheads– SCFC improves (on average) fault coverage
by 17%, performance overhead by 5% and power-consumption
by 3% with equal code-size overhead. It is important to note
that the reported results are worst-case scenarios and in real
systems the overheads will be considerably lower.

ACKNOWLEDGMENT

This work is supported by the STW Research organization.
Many thanks are due to Bryan Olivier from ACE B.V. support
team for his valuable help and Vlad M. Sima for his comments.

REFERENCES

[1] W. Wolf, “Embedded systems and hardware-software co-design:
Panacea or pandora box?” in 30th Conf. on Design Automation, June
1993, p. 308.

[2] D. Zhu, “Energy management for real-time embedded systems with
reliability requirements,” in Proceedings of International Conference
Computer-Aided Design, ICCAD, November 2006, pp. 528–534.

[3] T. S. Ganesh et al., “Seu mitigation techniques for microprocessor
control logic,” in Proceedings of the Sixth European Dependable
Computing Conference (EDCC’06), 2006, pp. 77–86.

[4] F. A. Bower, D. J. Sorin, and S. Ozev, “A mechanism for online
diagnosis of hard faults in microprocessors,” in Proceedings of the
38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO05), November 2005, pp. 197–208.

[5] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of error detection
schemes using fault injection by heavy-ion radiation,” in Proceedings
of Nineteenth International Symposium on Fault-Tolerant Computing,
1989. FTCS-19, June 1989, pp. 340–347.

[6] A. Mahmood and E. J. McCluskey, “Concurrent error detection using
watchdog processors-a survey,” in IEEE Trans. on Computers, 1988,
pp. 160–174.

[7] N. Saxena and E. J. McCluskey, “Dependable adaptive computing
systems the roar project,” in Proceedings of International Conference
on Systems, Man, and Cybernetics, 1998, pp. 2172–2177.

[8] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control flow checking
by software signatures,” IEEE Trans. on Reliability, vol. 51, no. 1, pp.
111–122, March 2000.

[9] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Trans. on Parallel and Distributed Systems, vol. 10,
no. 6, pp. 627–641, June 1999.

[10] O. G. ad M. Rebaudengo, M. S. Reorda, and M. Violante, “Soft-error
detection using control flow assertions,” in 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems. IEEE,
November 2003, pp. 581–588.

[11] G. A. Kanawati, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham,
“Evaluation of integrated system-level checks for on-line error detec-
tion,” in Proceedings of IEEE International Computer Performance and
Dependability Symposium. IEEE, September 1996, pp. 292–301.

[12] R. Vemu and J. Abraham, “Ceda: Control-flow error detection using
assertions,” IEEE Trans. on Computers, vol. 90, no. 9, pp. 1233–1245,
September 2011.

[13] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost on-
line fault detection using control flow assertions,” in 9th IEEE On-Line
Testing Symposium. IEEE, July 2003, pp. 137–143.

[14] N. Oh, P. P. Shirvani, and E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” in IEEE Trans. on Reliability,
march 2002, pp. 63–75.

[15] G. A. Reis et al., “Swift: software implemented fault tolerance,” in
Proceedings of International Symposium on Code Generation and
Optimization,CGO, March 2005, pp. 243–254.

[16] Cosy compiler. [Online]. Available: http://www.ace.nl/compiler/cosy
[17] C. Strydis, C. Kachris, and G. N. Gaydadjiev, “Impbench: A novel

benchmark suite for biomedical, microelectronic implants,” in Inter-
national Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation, 2008. SAMOS 2008., July 2008, pp. 82–91.

[18] Synopsys processor designer. [Online]. Available: http://www.synopsys.
com/Systems/BlockDesign/processorDev/Pages/default.aspx

[19] M. George and P. Alfke, “Linear feedback shift registers in virtex
devices,” www.xilinx.com, 2007.

[20] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Instruction
scheduling based on energy and performance constraints,” in Proceed-
ings of IEEE Computer Society Workshop on VLSI, 2000, pp. 37–42.

[21] V. Tiwari and M. T.-C. Lee, “Power analysis of a 32-bit embedded
microcontroller,” in Proceedings of Design Automation Conference,
ASP-DAC ’95/CHDL ’95/VLSI ’95., September 1995, pp. 141–148.

226

	2013-IC-28-letter

