
Suitable cache organizations for a novel biomedical implant processor

Christos Strydis

Computer Engineering Lab, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

E-mail:christos@ce.et.tudelft.nl

Abstract— This paper evaluates various instruction- and
data-cache organizations in terms of performance, power,
energy and area on a suitably selected biomedical benchmark
suite. The benchmark suite consists of compression, encryption
and data-integrity algorithms as well as real implant applica-
tions, all executed on biomedical input datasets. Results are used
to drive the (micro)architectural design of a novel micropro-
cessor targeting microelectronic implants. Our profiling study
has revealed a L1 instruction-cache of 8 KB size (when relaxed
area constraints are imposed) and a L1 data-cache of 4 KB
size, both structured as 2-way associative caches, as optimal
organizations for the envisioned implant processor.

I. INTRODUCTION

Biomedical microelectronic implants have been around for

more than 50 years. Perhaps the most well-known instance of

such devices is the implantable pacemaker which, apart from

saving lives, has acted as a catalyst on the general public

closed-mindedness against biomedical implants. Indicative

of the penetration and impact pacemakers have achieved is

the fact that, in the U.S. alone, a total number of 180,000

implantable pacemakers have been registered for the year

2005 (source: American Heart Association [1]). Overall,

biomedical implants are now being designed for an expand-

ing range of applications.

In a world where clinical healthcare costs are increasing

and population is aging, implant applications are expected

to multiply in the years to come. A future where people are

moving around performing their everyday tasks while tiny

implants are monitoring or assisting their body in various

ways is not so distant. Implants are expected to monitor and

log biological data in-vivo and, depending on the application,

to act on those readouts by regulating some physiological

quantity in the body e.g. to release insulin to the blood stream

when high blood-glucose levels are detected.

With a market finally mature enough to embrace implants

and the technological innovations of late to support them, im-

plant designers are slowly changing their approach. Already

established product cases such as the family of pacemakers

introduced by Medtronic [2], where previous design expertise

is (re)used to enhance the next device version, are currently

the exception. It has come to our attention that implant design

has been largely custom-based; that is, implants have been

developed as ASIC circuits tightly fitting the application

requirements at hand.

However, this is nowadays changing with implants moving

from custom-designed, application-specific (e.g. FSM-based)

systems [3], [4], [5] to more generic and software-based

0%

20%

40%

60%

80%

100%

1994-1997 1998-2001 2002-2005

no core(s)

P/ C

FSM

Fig. 1. Relative distribution of implant-core architecture types over the
last 12 years (Source: [9]).

(µP/µC-based) ones [6], [7], [8]. This trend has been well-

studied [9] and is depicted in Fig.1. What the figure tells us is

that implant-processor design is becoming more streamlined

and structured than it used to be and that in the near future

implant functionality will be based on executed software

(written in some high-level, established language like C)

rather than pure, hardwired circuitry.

The observed rapid expansion of implant applications in

the years to come calls for a formal, standardized way

of designing future implant architectures. Our long-term

work focuses on designing a novel, minimalistic, low-power

processor suitable for a large subset of biomedical appli-

cations as the ones mentioned above. We are currently at

the process of defining the architecture of such a digital

processor. In this paper, we profile various instruction- and

data-cache organization alternatives for this processor against

metrics of performance, power, energy and area. We, then,

select the ones with the best characteristics for the targeted

application domain. We, thus, offer insights on the design

and implementation of the cache subsystem of the targeted

processor. Concisely, the contributions of this work are:

• With respect to a given collection of typical and rep-

resentative biomedical workloads, to specify optimal

I- and D-cache geometries under performance, power,

energy and area constraints;

• To offer original, quantitative data on the behavior and

specifications of I- and D-caches for current and future

implant processors; and

• To propose a sound methodology and toolset for se-

lecting optimal I- and D-cache geometries for different

biomedical (or other) workloads.

The rest of the paper is organized as follows: section II

gives an overview of related works in the field. Section III

provides the details of our selected input datasets, application

benchmarks as well as the profiling testbed used. Section

IV contains, in detail, the findings of this work. Overall

conclusions and future work are drawn in section V.

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 591

II. RELATED WORK

So far, extensive work has been put in identifying and

profiling common applications to be executed on the targeted

implant architecture. Algorithms for lossless data compres-

sion [10], symmetric-key encryption [11] and data integrity

as well as representative real-world applications have been

evaluated and suitable candidates have been isolated. More-

over, a carefully selected benchmark suite for microelectronic

implants has been proposed [12], based on the profiled

applications, to guide and assist future implant design. This

benchmark suite has been shown to offer diverse program

behaviors and, thus, be able to capture corners of our design

space. We build on our previous work by using it in our

following exploratory study on suitable cache organizations.

Besides, a significant body of prior work has been pub-

lished on cache behavior with respect to traditional metrics

(e.g. cache misses) as well as recent ones (e.g. power

or energy). Fornaciari et al. [13] have proposed a design

framework for fast exploration of energy and performance

constraints (ED metric) at the system level. Their framework,

among others, supports the investigation of I- and D-cache

configurations of different cache sizes, block sizes and asso-

ciativity. Its applicability is limited by the fact that a complete

specification of the processor core is needed, which is not

available in our case, yet.

Hicks et al. [14] present an exhaustive analysis of power

consumption in caches when varying all cache configuration

parameters. Unfortunately, their working dataset has been a

subset of SPECint92 benchmarks which does not apply in

our case biomedical implants. Kamble and Ghose [15], on the

other hand, take a different approach and propose analytical

energy models for caches but their work is not applicable in

our case for the same reason as that of Hicks et al. Givargis

et al. [16] have evaluated the power consumption of various

cache and bus architectures with parameterizable character-

istics. Su and Despain [17] have performed a case study

on power-performance trade-offs for various conventional

and new cache designs targeted for low power. Shiue and

Chakrabarti [18] investigate suitable cache configurations for

low-power embedded systems. They correct and improve on

the Kamble-Ghose and Hicks analytical models and propose

algorithms for finding optimal configurations.

A problem with the above works is that caches are studied

in isolation from the rest of the system and, thus, no overall

performance behavior is attached to the various power fig-

ures, while information about the interplay between different

cache configurations and other components of a processor

core cannot be acquired. The work presented here is original

in that it targets a different class of low-power devices with

particular idiosyncrasies. To the best of our knowledge, no

similar effort has been reported so far in explicitly studying

cache structures for an implant processor. Further, we have

considered aspects of performance and power but also energy

and area in our study, to drive our selection process.

III. EXPERIMENTAL SETUP

In order to correctly set up our experiments as well as

to select suitable cache geometries, to be discussed in the

following section, we first elaborate on the particular idiosyn-

crasies of microelectronic implants. Such implants are highly

resource-constrained devices. The (re)implantation frequency

for battery replacement - a costly and risky undertaking - is

directly related to the operational life of a device. In order

to achieve long in-vivo operation times, we are aiming at a

tight power budget (µW order of magnitude).

An ultra-small form factor is also required for such

devices considering the space available for implantation

inside the body. This means that available processor area

is also limited. Besides there are further aspects benefitting

from low transistor counts (but out of the scope of this paper)

such as higher device yield, increased testability and higher

coverage for fault-tolerant design.

There has been shown to exist [19] and we are targeting

a significant category of biomedical applications displaying

moderate performance requirements, e.g. a feedback loop

periodically regulating the functionality of bioactuators based

on readouts from biosensors. Even so, under tight power and

area budgets, the implant still has to complete its real-time

(repetitive) duties within specific time margins. To do so, it

must maintain a minimal instruction rate under the worst-

case scenario.

Typical biomedical readouts are often highly periodic

signals (e.g. heart beat) or stable signals (e.g. blood tem-

perature) which can, under specific circumstances, display

gradual or abrupt changes in value (e.g. a sudden muscle

contortion). We have collected and used various workloads,

representative of such behaviors, capturing both stable as

well as rapidly changing patterns. The original workloads

have been provided from the BIOPAC (R) Student Lab PRO

v3.7 Software. Paper-size limitations do not allow for an

extensive description of the various workloads; for the work

presented here, we have used a biological dataset containing

10 KB of ECG data and representative of all examined

workloads. Reported literature [19] and an extensive study

[9] on implants have revealed that typical memory sizes

inside the implants range from 1 KB to 10 KB; thus, the use

of 10−KB ECG data. More particularly, they have revealed

instruction-memory sizes in the 10− KB locus and data-

memory sizes in the 1−KB locus.

Eight benchmark applications have been used to evaluate

different cache configurations. They comprise the ImpBench

benchmark suite [12] and consist of lossless data compres-

sion algorithms, symmetric-key encryption algorithms and

data-integrity algorithms as well as synthetic real applica-

tions). The benchmarks are reported in Table I for conve-

nience; they represent common tasks in present and future

implant applications and also exhibit varied characteristics.

Our cache evaluation study has been based on the XTREM

[26] simulator, a modified version of SimpleScalar [27].

The XTREM simulator is a cycle-accurate, microarchitec-

tural, power- and performance- functional simulator for the

592

Benchmark name size (KB)

Compression miniLZO [20] 16.3
Finish [21] 10.4

Encryption MISTY1 [22] 18.8
RC6 [22] 11.4

Data integrity checksum [23] 9.4
CRC32 [24] 9.3

Real applications motion [25] 9.44
DMU [7] 19.5

TABLE I

IMPBENCH BENCHMARKS.

feature value

ISA 32-bit ARMv5TE-compatible
Pipeline depth 7/8-stage, super-pipelined
Datapath width 32-bit
RF size 16 registers
Issue policy/Instr.window in-order/single-instruction
I/D-Cache, L1 (separ) 2B/block, 1-cc hit/170-cc miss latency
BTB/TLB 2-entry direct-mapped/1-entry
Branch Predictor 2-bit Bimodal (32-entry ret. addr. stack)
Write/Fill Buffer (separ) 2-entry/2-entry
Mem. bus width 1 Byte (1 mem. port)
INT/FP ALUs 1/1
Clock freq. 2 MHz
Implem. tech. 0.18 µm @ 1.5 Volt

TABLE II

XTREM (MODIFIED) ARCHITECTURE DETAILS.

Intel XScale core [28]. It models the effective switching

node capacitance of various functional units inside the core,

following a similar modeling methodology to the one found

in Wattch [29]. XTREM has been selected for its straight-

forward functionality but mostly for its high performance-

and power-modeling precision. It exhibits an average perfor-

mance error of 6.5% and an average power error of 4%.

Many of the XScale architectural features have been

integrated into XTREM. Thumb instructions and special

memory-page attributes are not supported but they do not

affect simulation results since they are not used by our

benchmarked applications. XTREM allows monitoring of 14

different functional units of the Intel XScale core: Instruction

Decoder (DEC), Branch-Target Buffer (BTB), Fill Buffer

(FB), Write Buffer (WB), Pend Buffer (PB), Register File

(REG), Instruction Cache (I$), Data Cache (D$), Arithmetic-

Logic Unit (ALU), Shift Unit (SHF), Multiplier Accumulator

(MAC), Internal Memory Bus (MEM), Memory Manager

(MM) and Clock (CLK). However, to better match our

application field and, also, to isolate cache behavior as much

as possible, many of XTREM’s architectural parameters have

been cut down or disabled to better reflect the highly con-

strained implantable processors. The modified XTREM char-

acteristics are summarized in Table II. Performance/power

figures have been checked and scale properly with the

changes.

IV. PROFILING ANALYSIS

The XScale core (and thus XTREM) assumes a Harvard

architecture, with separate L1 I-cache and D-cache and no

L2 caches so as to relax the bandwidth requirements on the

memory bus. Most implantable systems we have studied so

far feature separate caches (or memories, in general), and

thus we have limited our study to split caches as well.

To perform a thorough but realistic investigation of cache

sizes for biomedical implants, we have evaluated sizes in

0%

1%

10%

100%

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

IPC

I$ miss rate

D$ miss rate

Fig. 2. Averaged, average IPC and I/D-cache miss rates for various direct-
mapped, I-cache sizes.

0,001

0,01

0,1

1

10

100

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

10

20

30

40

50

60

70

80

90

100

DEC BTB ALU I$ D$
MEM MM CLK TOTAL(mW)

Fig. 3. Averaged, total (right axis) and per-component (left axis) average
power consumption (in mW) for various direct-mapped, I-cache sizes.

the range: [32B, 16KB], in accordance with our prior study

of existing implantable devices. However, as seen in Table

II, XTREM simulates a 32-bit wide architecture which is

unrealistic for the ultra-low-power processor that we are

targeting. By conservatively assuming an average size of

8-bits for our implant-processor ISA, we had to scale up

by a factor of 4x, to move from 8-bit to 32-bit quantities

(which are supported by our simulation testbed). Further,

since the minimal block size supported by XTREM is 2,

the scaling factor becomes 8x. In effect, the properly scaled,

final cache-size range becomes: [256B, 128KB]. We are

well aware that the final, scaled-down findings might be

suboptimal when mitigated to our actual implant processor

however they will give us useful hints and a good starting

point for further architectural design-space exploration. All

8 benchmarks have been profiled against each cache size

and average values are reported. Unless otherwise stated, all

average values in fact are median values since we cannot

guarantee normal distribution of the data in the general case.

A. Cache sizes

The first step in our methodology involves finding the

pair of optimal L1 I- and D-cache sizes under constraints of

performance, power, energy and area. First, we have kept D-

cache size constant at 32 KB and we have gradually increased

I-cache size from 256 B to 128 KB, each step featuring

double the size of the previous one. Both caches have been

configured as direct-mapped structures for this step. Figure

2 illustrates the variation of IPC and I/D-cache miss ratios

as a function of I-cache size. The figure actually plots also

593

0,001

0,01

0,1

1

10

100

1000

2
5
6
B

5
1
2
B

1
K
B

2
K
B

4
K
B

8
K
B

1
6
K
B

3
2
K
B

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M
B

2
M
B

0

100

200

300

400

500

600

700

800

900

1000

DEC BTB ALU I$ D$
MEM MM CLK TOTAL

(mJ)

Fig. 4. Averaged, total (right axis) and per-component (left axis) energy
budget (in mJ) for various direct-mapped, I-cache sizes.

larger cache sizes to give a better overview of the observed

trends, but such excess sizes are not considered as viable for

our application domain.

Expectedly, the D-cache miss rate is not affected by the I-

cache size, while the I-cache miss rate drops rapidly and

practically assumes a constant miss rate at 32 KB and

onwards. This affects the IPC which assumes a constant

value at the same point. This comes as little surprise since

each benchmark in our collection (see Table I) essentially

fits in the I-cache for sizes of 32 KB or more. However, it

is interesting to observe that the IPC value does not, in an

overall, change drastically with improving miss rates (viz.

from 0.027% it saturates at 0.044%).

The next metric we examine is average power consump-

tion. In Fig. 3, total and per-component power figures are

plotted for the investigated I-cache sizes. XTREM compo-

nents with zero power consumption have been omitted from

the plot. We can readily see that, while the I-cache power

increases exponentially with size, it is one to two orders of

magnitude smaller than that of the main power culprit; the

MM unit. The decoder and ALU components present the

most notable increase in their power profile with increasing I-

cache size, in response to the increased IPC, while the clock,

D-cache and memory bus in fact display dropping power

trends. Overall, average power consumption in the processor

reaches a minimum for an I-cache size of 64 KB.

Apart from average power consumption, for embedded

systems with a very constrained energy budget such as im-

plants are, it is also important to examine the overall energy

spent by the processor for executing all assigned tasks.

Energy has been shown to depend heavily on execution time

and, thus, energy plots are not necessarily identical to power

plots. In Fig. 4 overall energy budgets for different I-cache

sizes are plotted. Energy profiles in this case are similar to

the power profiles with the minimum again observed for

the 64−KB case. However, as can be observed from the

”TOTAL” line plots, contrary to power, energy budget drops

more steeply in the range from 256 B to 64 KB which makes

moving to I-cache sizes smaller than 64 KB more attractive.

In a fashion identical to I-cache sizes, we further investi-

gate D-cache sizes. In Fig. 5, the average IPC and I/D-cache

0%

1%

10%

100%

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

IPC
I$ miss rate
D$ miss rate

Fig. 5. Averaged, average IPC and I/D-cache miss rates for various direct-
mapped, D-cache sizes.

0,01

0,1

1

10

100

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

10

20

30

40

50

60

70

80

90

100

DEC BTB ALU I$ D$
MEM MM CLK TOTAL

(mW)

Fig. 6. Averaged, total (right axis) and per-component (left axis) average
power consumption (in mW) for various direct-mapped, D-cache sizes.

0,1

1

10

100

1000

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

0

100

200

300

400

500

600

700

800

900

1000

DEC BTB ALU I$ D$
MEM MM CLK TOTAL

(mJ)

Fig. 7. Averaged, total (right axis) and per-component (left axis) energy
budget (in mJ) for various direct-mapped, D-cache sizes.

miss rates for a constant I-cache size of 32 KB and variable

D-cache sizes are plotted. Contrary to I-cache behavior, we

can readily observe that increasing the D-cache size has

minimal impact on its miss rate. To be precise, D-cache

miss rates drop from an initial maximum of 0.863% to a

final minimum of 0.776% (first observed at 512 KB) for our

selected benchmark suite. I-cache miss rates by comparison

present a proportionally larger drop in the locus of 64 KB,

but in absolute terms remain roughly unaffected by the D-

cache size. In effect, the IPC presents a positive spike at

1 KB but then stabilizes to a constant value for a 64−KB

size and onwards.

As far as power consumption is concerned, results are

plotted in Fig. 6. With the exception of the clock network and

of course the D-cache itself, D-cache size increases do not

affect other processor subsystems as radically as the I-cache.

594

TOLERANCE LEVELS
metric I$-size var. D$-size var.

IPC 1.0000 0.9650
power 1.0000 0.9700
energy 1.0000 0.9700

TABLE III

TOLERANCE LEVELS FOR IPC, POWER AND ENERGY IN CACHE-SIZE

OBJECTIVE FUNCTION.

The IPC spike observed in the previous figure, manifests here

also as a power spike in the locus of 1 KB. Minimum power

is located again in the 64−KB locus but, opposite to the I-

cache case, overall power consumption drops steeply to this

value immediately after D-cache sizes of 2 to 4 KB. A last

observation is that, in an overall, I-cache size variation has

a stronger impact on power than D-cache size variation.

Figure 7, last, illustrates energy results for various D-

cache sizes. As was also the case with power, D-cache

size variation has a smaller impact on energy than I-cache

variation. However, the energy and power profiles in the

D-cache case are less consistent between them. Minimum

energy in this case is clearly observed in the 32−KB locus,

followed by a steep ramp-up for larger sizes. This gives us

a clear indication that, energy-wise, we should focus on D-

cache sizes of 32 KB or less.

For selecting the best sizes for the I-cache and D-cache

structures, we have based our evaluation on performance,

power consumption and energy expenditure. As a perfor-

mance metric, we have chosen the IPC instead of the miss

rates since we do not wish to study the caches in an isolated

environment but, rather, we wish to capture overall system

performance as a function of cache size. That is why we have

used a processor (rather than cache) simulator as our testbed.

For the very same reason we have also used total average

power consumption and total energy budget as our second

and third metric, respectively. To find optimal solutions, we

have used the following formula as our objective function

for minimization:

F(x) = IPCPD(x)+PPD(x)+EPD(x), (1)

where x represents a single cache-size node. Each term

VARPD(x) represents the percentage difference between the

VAR value at node x and the best VAR value across all

cache-size nodes (maximum value for IPC, minimum value

for power and energy). This percentage difference is given

by the formula:

VARPD(x) =
|VAR(x)−VAROPT |

(1/2)∗ (VAR(x)+VAROPT)
∗100, (2)

where VAROPT = max(VAR(x)) or min(VAR(x)), with x in

the range [256B,128KB]. We have chosen to use percentage

differences in our objective function (1) so as to normalize

all involved variables by calculating their ”relative” deviation

from the per-case optimal value.

We initially sought a cache size that optimizes all three

imposed metrics. For the case of the I-cache, the size of

64 KB (or 8 KB for our targeted implant processor) gave the

best results across IPC, power and energy. This is reflected

in Table III which shows tolerance levels of 1.000 for all

0

50

100

150

200

250

300

3
2
B

6
4
B

1
2
8
B

2
5
6
B

5
1
2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

I-cache w/o area D-cache w/o area
I-cache w/ area D-cache w/ area

(-)

Fig. 8. Results for various I- and D-cache sizes of objective function (1).

metrics; in essence, no compromises had to be made in the

decision.

Some commenting on this result is needed here. It is

obvious that we have avoided including an area metric in the

objective function above. The reason for this is the following:

Area doubles with each increasing node and this represents

a large percentage difference resulting in the ”optimal” value

for the area to be the very first node (smallest size). Further,

due to this doubling of values, the area metric becomes

dominant compared to the other three metrics which are

changing slowly by comparison. In effect, the objective

function would be strongly dominated by the area metric,

returning the smallest cache size as the optimal one. At

this point, we do not have a specific upper bound for the

overall (and thus cache) size of our targeted processor nor

can we make any educated guess on the weight of the area

metric in the above optimization function. Thus, we chose to

omit the area metric from this part and conclude that, under

no area constraints, for the given representative benchmark

collection, the optimal I-cache size is 8 KB for our processor.

However, for the D-cache case optimal results are not

directly related to program size and, what is more, are

more dispersed, as has been also observed in the previous

discussion on power and energy profiles. In this case, we

had to lower the objective-function tolerance levels up to

the point that we found a valid D-cache configuration. As

can be seen from Table III, a slight bias has been given

to power and energy over IPC for two reasons: i) the IPC

displayed insignificant variations with increasing D-cache

sizes, and ii) in our targeted processor we consciously want

to emphasize more on achieving low power and energy and

less on performance. With the tolerance levels lowered as

little as possible, the D-cache size giving the best results

across all three metrics was 32 KB (or 4 KB for our implant

processor). For the same reasons as for the I-cache case, the

area metric has been omitted here, too. Cumulative results

for objective function (1) for various I- and D-cache sizes

and direct-mapping of cache data are given in Fig. 8 where

the effect the area metric would have - should it be included

- is also shown.

595

0%

1%

10%

100%

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

IPC

I$ miss rate

D$ miss rate

Fig. 9. Averaged, average IPC and I/D-cache miss rates for various I-cache
associativity degrees.

0,01

0,1

1

10

100

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

60,0

60,5

61,0

61,5

62,0

62,5
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mW)

Fig. 10. Averaged, total (right axis) and per-component (left axis) average
power consumption (in mW) for various I-cache associativity degrees.

0,1

1

10

100

1000

D
M

2
-w
a
y

4
-w
a
y

8
-w
a
y

1
6
-w
a
y

3
2
-w
a
y

6
4
-w
a
y

1
2
8
-w
a
y

2
5
6
-w
a
y

5
1
2
-w
a
y

1
0
2
4
-w
a
y

2
0
4
8
-w
a
y

4
0
9
6
-w
a
y

F
A

369

379

389

399

409

419

429

439

449

459

469
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mJ)

Fig. 11. Averaged, total (right axis) and per-component (left axis) energy
budget (in mJ) for various direct-mapped, I-cache associativity degrees.

0

1

10

100

1000

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

 Data-array area

 Tag-array area

 Total area

(mm^2)

Fig. 12. Data-array, tag-array and total area (in mm2) for various I-cache
associativity degrees.

B. Cache associativity

Having selected optimal I- and D-cache sizes, we fix our

simulator I/D-caches to 64 KB and 32 KB respectively and

move to the second step of our study, which is the evaluation

of different degrees of associativity for both structures.

Starting with the I-cache, in Fig. 9 IPC and miss-rate results

are plotted for various associativity configurations, ranging

from direct-mapped (DM) to fully associative (FA). It can be

easily observed that increasing the I-cache ways has no effect

on the processor performance. Going back to Fig. 2, we can

recall that with an I-cache of 64 KB (and onwards) the miss

rate was essentially eliminated. In effect, the IPC figure here

points towards a direct-mapped or few-way organization for

the I-cache.

In Fig. 10, power figures are given for various I-cache

ways. As expected, changing the cache associativity hardly

affects the power behavior of the processor subsystems

except, of course, for the I-cache itself. It is interesting to

see that although required hardware area increases with the

ways, overall I-cache power consumption drops. We attribute

this to the way the cache is constructed (e.g. cache-line

buffering etc.). In a processor employing aggressive low-

power techniques such as XScale (and, thus, XTREM) is,

increasing the number of ways implies reducing the number

of active sets per cache access and, thus, the cache overall

power consumption. On the other hand, from the same figure

we can also observe a slight increase in the D-cache power

when more ways in the I-cache are implemented. Given

that the IPC is not notably impacted, we have so far been

unable to find the reason for that phenomenon. In any case,

the combined result of the above two cache trends (plus

an initial drop in the MM unit) is a net decrease of the

overall, average power consumption in the processor which,

for the considered ultra-low-power implants we envision, is

non-negligible. In effect, with 64 ways or more the I-cache

power consumption settles to its overall minimum.

The energy budgets for different I-cache ways are illus-

trated in Fig. 11. In a similar manner to power, albeit slower,

overall energy costs drop with more cache ways due to

the previously discussed I-cache and D-cache behaviors. At

the 32- to 64-way nodes, the processor achieves the lowest

energy expenditure throughout.

In this part of our analysis, it also makes sense to consider

the area cost of the I-cache when moving to more associa-

tivity ways. Since moving to a higher associativity degree

(while keeping the overall cache size constant) results in a

slower area increase compared to doubling the cache size

(with a given associativity degree), our objective function

shall show weak biasing towards the area metric. We have,

therefore, properly configured and run CACTI v6.0 to collect

area-utilization figures for various cache geometries. Find-

ings for up to a realistic number of ways are illustrated in

Fig. 12. We can easily observe that the global area minimum

lies at an associativity degree of 2. The 4-way or 8-way

configurations are also attractive alternatives with similar

area costs.

We now move to investigating the optimal D-cache asso-

ciativity. Figure 13 reveals that changing the associativity of

the D-cache has the same marginal effect to the IPC as for

I-cache. Miss rates are equally unaffected, the reason being

that higher associativity does not seem to offer any additional

speedup to the execution of the benchmarks.

As far as power consumption is concerned, Fig. 14 has

been plotted. As expected, I-cache power does not change

596

0%

1%

10%

100%

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

2
5
6
-w

a
y

5
1
2
-w

a
y

1
0
2
4
-w

a
y

2
0
4
8
-w

a
y

4
0
9
6
-w

a
y

F
A

IPC

I$ miss rate

D$ miss rate

Fig. 13. Averaged, average IPC and I/D-cache miss rates for various D-
cache associativity degrees.

0,01

0,1

1

10

100

D
M

2
-w
a
y

4
-w
a
y

8
-w
a
y

1
6
-w
a
y

3
2
-w
a
y

6
4
-w
a
y

1
2
8
-w
a
y

2
5
6
-w
a
y

5
1
2
-w
a
y

1
0
2
4
-w
a
y

2
0
4
8
-w
a
y

F
A

60,0

60,5

61,0

61,5

62,0

62,5
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mW)

Fig. 14. Averaged, total (right axis) and per-component (left axis) average
power consumption (in mW) for various D-cache associativity degrees.

0,1

1

10

100

1000

D
M

2
-w
a
y

4
-w
a
y

8
-w
a
y

1
6
-w
a
y

3
2
-w
a
y

6
4
-w
a
y

1
2
8
-w
a
y

2
5
6
-w
a
y

5
1
2
-w
a
y

1
0
2
4
-w
a
y

2
0
4
8
-w
a
y

F
A

369

379

389

399

409

419

429

439

449

459

469
DEC BTB ALU I$ D$ MEM MM CLK TOTAL(mJ)

Fig. 15. Averaged, total (right axis) and per-component (left axis) energy
budget (in mJ) for various D-cache associativity degrees.

0

1

10

100

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

 Data-array area

 Tag-array area

 Total area

(mm^2)

Fig. 16. Data-array, tag-array and total area (in mm2) for various D-cache
associativity degrees.

significantly with D-cache associativity, while the power

consumption of the D-cache gradually drops. Overall power

presents a slow climbing trend mainly due to the contribu-

tions of the clock network and the MM unit. This implies

that, in the general case, less ways for the D-cache should

be sought in terms of power, but the correlation is weak.

TOLERANCE LEVELS
metric I$-size var. D$-size var.

IPC 0.9985 0.9985
power 1.0000 1.0000
energy 1.0000 1.0000
area 0.9865 0.9900

TABLE IV

TOLERANCE LEVELS FOR IPC, POWER, ENERGY AND AREA IN

CACHE-WAY OBJECTIVE FUNCTION.

0

50

100

150

200

250

D
M

2
-w

a
y

4
-w

a
y

8
-w

a
y

1
6
-w

a
y

3
2
-w

a
y

6
4
-w

a
y

1
2
8
-w

a
y

I-cache w/ area D-cache w/ area

(-)

Fig. 17. Results for various I- and D-cache associativity degrees of
objective function (3).

D-cache associativity versus energy cost has been plotted

in Fig. 15. Observations are identical to the ones previously

made for power, however in this case we witness a less

uniform profile in the memory bus, the MM unit and other

components, resulting in a high-energy spike at the 16-way

node. This prepossesses us in favor of a D-cache design with

less than 16 ways.

Last, the D-cache area cost with increasing associativity

has been plotted in Fig. 16. As was the case for the I-

cache, again the globally minimal area is found for 2-way

associativity with the direct-mapped and 4-way alternatives

being also viable choices.

For identifying the best I-/D-cache associativity degrees,

we have used a cache-associativity objective function similar

to (1) and percentage differences given by (2). The new

objective function (3) varies only in the fact that the area

percentage difference has been incorporated in the summa-

tion:

F(x) = IPCPD(x)+PPD(x)+EPD(x)+APD(x), (3)

We have, once more, favored power and energy slightly

more than performance and, in this case, area. In so doing,

we have acquired the best associativity degree for both the

I-cache and for the D-cache to be 2-way. For convenience,

cumulative results for objective function (3) for various I-

and D-cache associativity degrees and fixed sizes are given

in Fig. 17.

V. CONCLUSIONS

In this paper we have provided a detailed investigation

of various instruction- and data-cache configurations, tested

on a specially modified, low-power, cycle-accurate proces-

sor simulator. We have fed the machine with benchmarks

suitable for profiling biomedical-implant applications and

597

have focused on performance, power, energy and area results

given by the various cache configurations. We have, then, run

sequential optimization (minimization) functions on the spec-

ified design space and have identified best instruction- and

data-cache candidates for our end goal which is the design

of an implant processor. Concisely, a 2-way L1 instruction-

cache of 8 KB size and a 2-way associative L1 data-cache

of 4 KB size have been selected. We are fully aware of

the fact that we have scaled our simulation parameters

and the produced results to reflect the targeted biomedical-

implant processor. This does not necessarily mean that these

results will represent optimal selections in our final processor

design. However, the paper offers a sound methodology and,

at the same time, defines a suitable starting point for the

design-space exploration work for our envisioned processor.

Besides, the methodology we have used, supported by a

cycle-accurate power/performance simulator and our devel-

oped toolflow, can be used to find optimal cache configura-

tions for different application scenarios. Updating objective

functions with more variables (i.e. design parameters) is

straight-forward and adjusting their contribution (weight) and

tolerance levels to the optimization problem can be modified

just as easily. Last, this work to our best knowledge is the

first attempt to study cache behavior and geometries for

the application field of biomedical implants. Based on our

previous profiling study and the current work, our future

work entails the full (micro)architectural specification and

prototyping of our targeted biomedical-implant processor.

VI. ACKNOWLEDGEMENTS

This work has been partially supported by the ICT Delft

Research Centre (DRC-ICT) of the Delft University of

Technology. Many thanks are due to Kyriakos Stavrou for

his help with CACTI.

REFERENCES

[1] H. Ector and P. Vardas, “Heart disease and stroke statistics - 2008
Update (At-a-Glance Version),” American Heart Association, 2008.

[2] “Medtronic - Cardiology product list,” http://www.medtronic.com/
physician/cardiology.html.

[3] M. Ghovanloo and K. Najafi, “A modular 32-site wireless neural
stimulation microsystem,” in IEEE Journal of Solid-State Circuits,
vol. 39, December 2004, pp. 2457–2466.

[4] P. Mohseni and K. Najafi, “Wireless multichannel biopotential record-
ing using an integrated FM telemetry circuit,” in 26th Annual Interna-

tional Conference of the IEEE in Engineering in Medicine and Biology

Society (EMBS), San Francisco, CA, USA, 1-5 September 2004, pp.
4083–4086.

[5] H. Park, H. Nam, B. Song, and J. Cho, “Design of miniaturized teleme-
try module for bi-directional wireless endoscopy,” IEICE Transactions

on Fundamentals on Electronics, Communications and Computer

Sciences, vol. 6, pp. 1487–1491, June 2003.

[6] C. Liang, J. Chen, C. Chung, C. Cheng, and C. Wang, “An implantable
bi-directional wireless transmission system for transcutaneous biolog-
ical signal recording,” Physiological Measurement, vol. 26, pp. 83–97,
February 2005.

[7] P. Cross, R. Kunnemeyer, C. Bunt, D. Carnegie, and M. Rathbone,
“Control, communication and monitoring of intravaginal drug delivery
in dairy cows,” in International Journal of Pharmaceuticals, vol. 282,
10 September 2004, pp. 35–44.

[8] H. Lanmuller, E. Unger, M. Reichel, Z. Ashley, W. Mayr, and
A. Tschakert, “Implantable stimulator for the conditioning of den-
ervated muscles in rabbit,” in 8th Vienna International Workshop on

Functional Electrical Stimulation, Vienna, Austria, 10-13 September
2004.

[9] C. Strydis et al., “Implantable microelectronic devices: A comprehen-
sive review,” Computer Engineering, TU Delft,” CE-TR-2006-01, Dec.
2006.

[10] C. Strydis and G. Gaydadjiev, “Lossless data compression in ultra-low-
power embedded systems: An analysis,” in Submitted to International

Conference on Hardware-Software Codesign and System Synthesis

(CODES’08), Atlanda, Georgia, 19-24 October 2008.
[11] C. Strydis, D. Zhu, and G. Gaydadjiev, “Profiling of symmetric

encryption algorithms for a novel biomedical-implant architecture,”
in ACM International Conference on Computing Frontiers (CF’08),
Ischia, Italy, 5-7 May 2008, pp. 231–240.

[12] C. Strydis, C. Kachris, and G. Gaydadjiev, “ImpBench - A novel
benchmark suite for biomedical, microelectronic implants,” in To

appear in International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS’08), Samos, Greece,
21-24 July 2008.

[13] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, “A design
framework to efficiently explore energy-delay tradeoffs,” in CODES

’01: Proceedings of the ninth international symposium on Hard-

ware/software codesign, New York, NY, USA, 2001, pp. 260–265.
[14] P. Hicks, M. Walnock, and R. Owens, “Analysis of power consumption

in memory hierarchies,” Low Power Electronics and Design, 1997.

Proceedings., 1997 International Symposium on, pp. 239–242, Aug
1997.

[15] M. Kamble and K. Ghose, “Analytical energy dissipation models
for low power caches,” Low Power Electronics and Design, 1997.

Proceedings., 1997 International Symposium on, pp. 143–148, Aug
1997.

[16] T. Givargis, F. Vahid, and J. Henkel, “Evaluating power consump-
tion of parameterized cache and bus architectures in system-on-a-
chip designs,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 9, no. 4, pp. 500–508, Aug 2001.
[17] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and

performance optimization: a case study,” in ISLPED ’95: Proceedings

of the 1995 international symposium on Low power design, New York,
NY, USA, 1995, pp. 63–68.

[18] W. Shiue and C. Chakrabarti, “Memory exploration for low power,
embedded systems,” in DAC’99, 1999, pp. 140–145.

[19] C. Strydis, G. Gaydadjiev, and S. Vassiliadis, “The case for standard
processing elements in biomedical, microelectronic implants,” Submit-

ted to IEEE Transactions on Computers - Special Issue: Chips and

Architectures for Emerging Technologies and Applications, February
2009.

[20] M. Oberhumer, “”LZO v2.0.2”,” http://www.oberhumer.com/
opensource/lzo/.

[21] N. de Vries, “Lossless Data-Compression Kit, LDS v1.1,” http://www.
nicodevries.com/nico/lds13.zip.

[22] Y. Law, J. Dourmen, and P. Hartel, “Survey and benchmark of block
ciphers for wireless sensor networks,” ACM Transactions on Sensor

Networks, vol. 2, pp. 65–93, February 2006.
[23] R. Braden, D. Borman, and C. Partridge, “Computing the internet

checksum,” SIGCOMM Comput. Commun. Rev., vol. 19, no. 2, pp.
86–94, 1989.

[24] “Cell Relay Retreat: CRC-32 Calculation, Test Cases and HEC Tuto-
rial,” http://cell.onecall.net/cell-relay/publications/software/.

[25] P. Wouters, M. D. Cooman, D. Lapadatu, and R. Puers, “A low
power multi-sensor interface for injectable microprocessor-based an-
imal monitoring system,” in Sensors and Actuators A: Physical, vol.
41-42, 1994, pp. 198–206.

[26] G. Contreras et al., “XTREM: A Power Simulator for the Intel XScale
Core,” in LCTES’04, 2004, pp. 115–125.

[27] T. Austin et al., “SimpleScalar: an infrastructure for computer system
modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67, Feb. 2002.

[28] Intel XScale Microarchitecture for the PXA255 Processor: User’s

Manual, Intel Corp., March 2003.
[29] D. Brooks et al., “Wattch: A Framework for Architectural-Level Power

Analysis and Optimizations,” in ISCA’00, 2000, pp. 83–94.

598

