
ImpBench: A novel benchmark suite for biomedical, microelectronic

implants

Christos Strydis, Christoforos Kachris, Georgi N. Gaydadjiev

Computer Engineering Lab, Delft University of Technology,

P.O. Box 5031, 2600 GA Delft,The Netherlands

Phone:+31-(0)15-27-83591 E-mail:christos@ce.et.tudelft.nl

Abstract— So far, design and deployment of microelectronic,
implantable devices has largely had a strongly ”ad-hoc” charac-
ter. The majority of existing devices has been custom-tailored
to the specific application in mind, in an effort to abide by
strict design constraints on safety as well as power and size.
However, an enabling technology and the fact that implants
are gradually becoming mainstream market products calls for
a more structured design approach. Towards that end, in
this paper we present ImpBench, a novel benchmark suite
meant for designing and evaluating new digital processors for
microelectronic implants. In an application field as wide as the
various pathoses of the human body, we have conceptualized
this suite based on common-sense and market-driven indicators,
and we have established its usefulness and uniqueness based
on extensive experimental measurement. The suite consists
of eight carefully selected programs, chosen on the basis
of popularity among contemporary and emerging implant
applications. MiBench being the closest to our application
field, that is embedded systems, has been used for a detailed
comparative study. Since implants are required to perform
control-, processing- or I/O-intensive tasks, various benchmark
characteristics have been studied, namely: performance (IPC),
cache and branch-prediction behavior, instruction distribution
and power consumption. Results display significant variation
from existing benchmarks to justify the need for and usefulness
of ImpBench.

Index Terms— implant, benchmark suite, profiling, kernel,
power, energy

I. INTRODUCTION

Microelectronics design has shifted in recent years to

synthesizing low-power systems. A major vehicle towards

this trend has been the radical shift, through enabling tech-

nology, to portable devices such as mobile phones and laptop

computers. A field of science that has adhered to strict low-

power and many additional constraints since its infancy is

biomedical microelectronic implants and has been around

for more than 50 years. Perhaps the most popular instance of

such devices is the implantable pacemaker which, apart from

saving lives, has acted as a catalyst on the general public

closed-mindedness against biomedical implants. Indicative

of the penetration and impact pacemakers have achieved is

the fact that, in Europe alone, a total number of 299,705

implanted devices have been registered over the year 2003

(source: European Society of Cardiology [1]).

With the pacemaker being the flagship, biomedical im-

plants are now being designed for a large, and constantly

increasing, range of applications. These applications are

0%

20%

40%

60%

80%

100%

1994-1997 1998-2001 2002-2005

no core(s)
P/ C

FSM

Fig. 1. Relative distribution of implant-core architecture types over the
last 12 years (Source: [2]).

primarily grouped into two main categories: physiological-

parameter monitoring (for diagnostic purposes) and stimula-

tion (actuation, in general) [2]. Instances of the former are

devices measuring body temperature [3], blood pressure [4],

blood-glucose concentration [5], gastric pressure [6], tissue

bio-impedance [7] and more. In the latter category belong

pacemakers [8], [9] and implantable intracardiac defibril-

lators (ICDs) [10], various functional electrical stimulators

for paralyzed extremities [11], for bladder control [12], for

blurred eye cornea [13] and more pathoses.

In a world where clinical health-care costs are increasing

and population is aging, implant applications are expected

to multiply in the years to come. A future where people are

moving around performing their everyday tasks while tiny

implants are monitoring or assisting their body in various

ways is not so distant. With a market finally mature enough

to embrace implants and the technological innovations of

late to support them, implant designers are slowly changing

their approach. With the exception of already established

product cases such as the family of pacemakers introduced by

Medtronic [14] where previous design expertise is (re)used to

enhance the next device version, it has come to our attention

that implant design has been largely custom-based; that is,

implants have been developed as ASIC circuits tightly fitting

the application requirements at hand. However, this is nowa-

days changing with implants moving from custom-designed,

application-specific (e.g. FSM-based) systems [15], [16],

[17] to more generic and software-based (µP /µC-based)

ones [18], [19], [20]. This trend has been well-studied [2]

and is depicted in Fig.1. What the figure tells us is that

implant-processor design is becoming more streamlined and

structured than it used to be and that in the near future

implant functionality will be based on executed software

(written in some high-level, established language like C)

rather than pure, hardwired circuitry.

978-1-4244-1985-2/08/$25.00 ©2008 IEEE
82

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

With the list of potential implant applications constantly

expanding and the number of software-based implant solu-

tions increasing, the need for a formal, standardized way

of designing and evaluating future implant architectures

becomes apparent. In this context, we have developed the

ImpBench suite to address that need. While in the areas

of general-purpose computing, multimedia and networking,

to name a few, research has relied on well-established

workload-characterization suites such as the SPEC bench-

mark suite [21] for optimizing the underlying hardware, this

has not been the case in the area of implant-core design.

Through ImpBench we target the following goals:

• In an application field which is diverse by nature, to

identify a common subset of programs representative

of the workloads of existing and emerging implantable

systems;

• To propose self-contained programs written in a popu-

lar, high-level language so as to allow for easy porting

to new implant cores under evaluation;

• To propose a benchmark suite that is freely available to

the research community;

• To verify the uniqueness and, thus, usefulness of Imp-

Bench as compared to other existing benchmark suites.

The rest of the paper is organized as follows: section II

gives an overview of previously proposed benchmark suites.

Section III outlines the framework onto which this study has

been built, based on the characteristics of biomedical im-

plantable devices. In section VI the details of the components

of ImpBench are laid out. Section V provides the details

of our selected profiling testbed for evaluating the various

benchmarks. Section VI presents, reflecting upon various

metrics, the contrast between ImpBench and MiBench [22],

the most closely related benchmark suite to our application

field. Overall conclusions and future work are discussed in

section VII.

II. RELATED WORK

A large number of benchmark suites has already been

proposed for various application areas. The SPEC benchmark

suite with its latest version, the CPU2006 [21], targets

general-purpose computers by providing programs and data

divided into separate integer and floating-point categories. In

particular, the design of server- and desktop-class micropro-

cessors has been heavily influenced by the popular SPEC

benchmarks as a measure of performance.

MediaBench [23], now in version II, is oriented towards

multimedia- and communications-oriented embedded sys-

tems. The authors identify that most advances in com-

piler technology for instruction-level parallelism (ILP) have

focused on general-purpose computing, driven by SPEC-

characterized workloads. With the introduction and estab-

lishment of a plethora of multimedia-targeted embedded

processors provisioned for increased ILP, new workloads

needed to be introduced, as well. MediaBench has been put

together to address that need.

The Embedded Microprocessor Benchmark Consortium

(EEMBC) [24] is a non-profit organization aiming at the

development of embedded-systems benchmarks for hard-

ware and software performance evaluation. The consor-

tium licenses ”algorithms” and ”applications” organized into

benchmark suites targeting telecommunications, networking,

digital entertainment, Java, automotive/industrial, consumer

and office equipment products. It has also provided a suite

capable of energy monitoring in the processor. Of late,

EEMBC has introduced a collection of benchmarks targeting

multicore processors (MultiBench v1.0). However, subject to

the consortium licensing regulations, only EEMBC members

are entitled to publish their benchmark test results and they

can do so by previously submitting these to a certification

lab.

MiBench [22] is another proposed collection of bench-

marks aimed at the embedded-processor market. It features

six distinct categories of benchmarks ranging from automo-

tive and industrial control to consumer devices and telecom-

munications. According to the authors, MiBench has many

similarities with the EEMBC benchmark suite, however it

is composed of freely available source code. The diversity

and usefulness of MiBench has been evaluated against the

SPEC2000 benchmarks.

NetBench [25] has been introduced as a benchmark suite

for network processors. It contains programs representing all

levels of packet processing; from micro-level (close to the

link layer), to IP-level (close to the routing layer) and to

application-level programs. The authors show that although

they aim architectures similar to ones MediaBench does, their

workloads have significantly different characteristics. Hence,

a separate benchmark suite for network processors has been

considered a necessity.

Network processors are also targeted by CommBench

[26], focused on the telecommunications aspect. It contains

eight, computationally intensive kernels, four oriented to-

wards packet-header processing and four towards data-stream

processing. The suite is evaluated against SPEC95 and its

usefulness is shown in a usage case of designing a single-

chip, network multiprocessor.

III. CHARACTERISTICS OF IMPLANTABLE PROCESSORS

Of late, workload-characterization programs more suited

to the embedded domain have been proposed, clearly differ-

entiating from the over-abused SPEC programs. Although in

the widest sense biomedical implants are embedded systems,

they adhere to a unique set of design and operation require-

ments, delineating their own design space and workloads.

Some of the most prominent requirements are as follows.

A large class of biomedical implants performs periodic,

in-vivo measurements of physiological data (blood pressure,

blood temperature, intracranial pressure, blood-glucose con-

centration, muscle or nerve activity etc.) through appropriate

sensors. The collected data need either to be stored inside

the implant for later telemetry to an external monitoring

device e.g. a treating physician’s office computer or to be

periodically transmitted to an external data-logging system

such as a PDA, laptop computer etc.. This pattern of behavior

indicates that outbound biological-data traffic almost always

83
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Compression Encryption Data Real

integrity applications

miniLZO [27] MISTY1 [28] chechsum [29] motion [3]
Finish [30] RC6 [28] CRC32 [31] DMU [19]

TABLE I

IMPBENCH BENCHMARKS.

dominates inbound traffic. Last, data must be transmitted

securely as well as reliably; information eavesdropping or

loss is not tolerated.

Depending on the application, implant processors may

need to perform computation-, control- or I/O-intensive tasks

in the human body, for instance, collection of sensory read-

outs, processing, storage and open- or closed-loop control

of bio-actuators. In all cases, throughput should be no

higher than that required by the underlying application for

maintaining a low as possible energy profile and a highly

reliable operation. Autonomy and dependability are primary

concerns in implantable systems given the economical and

health penalties involved.

Biological or other data manipulation in implants can

in most cases be coped with through integer arithmetic.

Expensive, floating-point operations can be avoided by smart

manipulation of the data or postponed until the time when

data are telemetered to an external logging station with

infinite (in our context) computational resources, thus saving

the implant the trouble of processing them. There are,

however, distinct cases where in-vivo, run-time decisions

have to be made depending on the results of floating-point

math operations. One such case is simulated by the dmu

benchmark, to be discussed in the next section.

Lastly, reported literature and an extensive study [2] on

biomedical implants has further revealed that typical data-

memory sizes inside the implants range from 1 KB to

10 KB. Program memories are equally restricted, with sizes

in the order of magnitude of 10 KB.

IV. THE IMPBENCH COMPONENTS

Even though the previous section introduced a set of

the most prominent implant characteristics, such devices

have always been and will be, by nature, serving a wide

variety of applications. This makes the task of identifying a

representative workload set a tough one. Although ImpBench

is expected to be a continuously evolving and updated tool,

still we are confident that we have correctly identified a

common subset of programs essential for all current and

future implantable systems.

To draw a clear structure of our proposed benchmark

programs, we have grouped them in four distinct categories

of two programs each: lossless data compression, symmetric-

key encryption, data-integrity and synthetic programs (what

we call henceforth real applications). The benchmarks as

summarized in Table I and are as follows:

i. miniLZO: MiniLZO is a light-weight subset of the

LZO library (LZ77-variant). LZO is a data compression

library suitable for data de-/compression in real-time, i.e.

it favors speed over compression ratio. LZO is written in

ANSI C and is designed to be portable across platforms.

MiniLZO implements the LZO1X-1 compressor and

both the standard and safe LZO1X decompressor.

ii. Finish: This is a C version of the Finish submission to

the Dr. Dobbs compression contest. It is considered to

be one of the fastest DOS compressors and is, in fact,

a LZ77-variant, its functionality based on a 2-character

memory window.

iii. MISTY1: MISTY1 is one of the CRYPTREC-

recommended 64-bit ciphers and is the predecessor

of KASUMI, the 3GPP-endorsed encryption algorithm.

MISTY1 is designed for high-speed implementations

on hardware as well as software platforms by using

only logical operations and table lookups. MISTY1 is

a royalty-free open standard documented in RFC2994

[32] and is considered secure with full 8 rounds.

iv. RC6: RC6 is a parameterized cipher and has a small

code size. RC6 is one of the five finalists that competed

in the AES challenge and has reasonable performance.

Further, Slijepcevic et al. [33] selected RC6 as the

algorithm of choice for WSNs. RC6-32/20/16 with 20

rounds is considered secure.

v. checksum: The checksum is an error-detecting code

that is mainly used in network protocols (e.g. IP and

TCP header checksum). The checksum is calculated by

adding the bytes of the data, adding the carry bits to

the least significant bytes and then getting the two’s

complement of the results. The main advantage of the

checksum code is that it can be easily implemented using

an adder. The main disadvantage is that it cannot detect

some types of errors (e.g. reordering the data bytes). In

the proposed benchmark, a 16-bit checksum code has

been selected which is the most common type used for

telecommunications protocols.

vi. CRC32: The Cyclic Redundancy Check (CRC) is an

error-detecting code that is based on polynomial divi-

sion. The main advantage of the CRC code is its simple

implementation in hardware, since the polynomial divi-

sion can be implemented using a shift register and XOR

gates. In the proposed benchmark, the ITU-C CRC-16

code has been selected offering strong error correction

without adding too much computation overhead. The

ITU-C CRC-16 code is widely used in lightweight

network protocols for wireless sensor networks such as

the ZigBee protocol.

vii. motion: This is a synthetic benchmark based on the

algorithm described in the work of Wouters et al. [3].

It is a motion-detection algorithm for the movement

of animals. In this algorithm, the degree of activity is

actually monitored rather than the exact value of the

amplitude of the activity signal. That is, the percentage

of samples above a set threshold value in a given moni-

toring window. In effect, this motion-detection algorithm

is a smart, efficient, data-reduction algorithm.

viii. DMU: This is a synthetic benchmark based on the

system described in the work of Cross et al. [19]. It

simulates a drug-delivery & monitoring unit (DMU).

This program does (and can) not simulate all real-

time time aspects of the actual (interrupt-driven) system,

84
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

such as sensor/actuator-specific control, low-level func-

tionality, transceiver operation and so on. Nonetheless,

the emphasis here is on the operations performed by

the implant core in response to external and internal

events (i.e. interrupts). A realistic model has been built

imitating the real system as closely as possible.

Selection of the specific two pairs of compression and

encryption algorithms, above, has been based on related

works [34], [35] investigating suitable algorithms for highly

resource-constrained embedded systems. As explained in

those works, lossless as opposed to lossy compression al-

gorithms have been included since information deterioration

is not an option for implant applications. Also, symmetric-

as opposed to asymmetric-encryption algorithms have been

included since they characterize better the operational profile

of implants. The checksum error-detecting code has been

selected for its minimal overhead and effectiveness (it has

been used in implantable systems time and again) while

CRC32 has already been implemented in various light-

weight network protocols including the energy-scavenging

ZigBee. Lastly, we have implemented both real applications

(motion and dmu) after extensively investigating the diverse

field of implant applications and consider them capable of

capturing commonly met operations in contemporary and

future implants. Suitable datasets representing biological

content have been used to feed all benchmarks. Particularly

for the dmu benchmark, actual, field datasets have been

used in order to capture the exact behavior of the simulated

implantable system.

By including pairs of different algorithms performing

similar functionality in ImpBench, we attempt to offer some

benchmarking diversity able to capture different aspects of a

new system when evaluated against the suite. This diversity

will be further illustrated in section VI.

V. EXPERIMENTAL SETUP

For evaluating the uniqueness and usefulness of Imp-

Bench, we have chosen to compare it against a number

of benchmark programs extracted from MiBench. MiBench,

rather than SPEC, MediaBench or other benchmarks suites,

appears to be the most closely related (in terms of workloads)

to the application field we are targeting. In order to perform

fair comparisons between the two suits across various met-

rics, we had to run both benchmark collections in a suitable

profiling platform.

The profiling has been based on XTREM [36], a modified

version of SimpleScalar [37]. The XTREM simulator is a

cycle-accurate, microarchitectural, power- and performance-

functional simulator for the Intel XScale core. It models the

effective switching node capacitance of various functional

units inside the core, following a similar modeling method-

ology to the one found in Wattch [38]. XTREM has been

selected for its straight-forward functionality but mostly for

its high precision in modeling the performance and power

of the Intel XScale core [39]. More precisely, it exhibits an

average performance error of only 6.5% and an even smaller

average power error of only 4% [36].

feature value

ISA 32-bit ARMv5TE-compatible
Pipeline depth 7/8-stage, super-pipelined
Datapath width 32-bit
RF size 16 registers
Issue policy / Instr.window in-order / single-instruction
I-Cache, L1 32KB, d.mapped (1cc-hit/170cc-miss lat.)
D-Cache, L1 32KB, d.mapped (1cc-hit/170cc-miss lat.)
TLB 1-entry fully-assoc.
BTB 2-entry direct-mapped
Branch Predictor 2-bit Bimodal (32-entry ret. addr. stack)
Write Buffer / Fill Buffer 2-entry / 2-entry
Mem. port no / bus width 1 port / 1 Byte
INT/FP ALUs 1/1
Clock frequency 2 MHz
Implem. tech. 0.18 µm @ 1.5 Volt

TABLE II

XTREM (MODIFIED) ARCHITECTURE DETAILS.

Many of the XScale architectural features have been

integrated into XTREM. Thumb instructions and special

memory-page attributes are not supported but they do not

affect simulation results since they are not used by our

benchmarked applications. XTREM allows monitoring of 14

different functional units of the Intel XScale core: Instruction

Decoder (DEC), Branch-Target Buffer (BTB), Fill Buffer

(FB), Write Buffer (WB), Pend Buffer (PB), Register File

(REG), Instruction Cache (I$), Data Cache (D$), Arithmetic-

Logic Unit (ALU), Shift Unit (SHF), Multiplier Accumulator

(MAC), Internal Memory Bus (MEM), Memory Manager

(MM) and Clock (CLK). However, to better match our

application field, many of XTREM’s architectural param-

eters have been sized down or disabled to better reflect

the highly constrained implantable processors. The modified

XTREM characteristics are summarized in Table II. Perfor-

mance/power figures have been checked and scale properly

with the changes.

VI. BENCHMARK CHARACTERIZATION

Since the MiBench suite spans a wide range of application

fields, we have selected a small but representative subset

from the ones most related to our own field. Selection has

also been based on porting issues since not all MiBench

programs could be successfully compiled on our bare-metal

(i.e. no OS-support) simulator. From the ”Consumer” cate-

gory jpeg has been been chosen, from the ”Office” category

stringsearch, from the ”Network” category blowfish, from the

”Security” category SHA and from the ”Telecomm.” category

ADPCM enc.. For all profiled benchmarks, only the com-

pression part of compression algorithms and the encryption

part of cryptographic algorithms have been considered since

they are the most computationally demanding aspects and/or

are the most commonly executed from the point of view of

implantable systems.

The goal of this phase is to empirically test whether the

ImpBench suite is quantitatively different from the MiBench

suite, each operating on its own representative datasets

(inter-benchmark variation). We also wish to point out the

variety in behavior offered by the two alternative flavors in

each one of the four ImpBench categories (intra-benchmark

variation). Most results indicate relative values, that is, ratios.

Unless otherwise stated, discussed average values are, in fact,

85
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

0,0
47

0,5
37

0,9
96

0,2
11

0,0
63

0,5
70

0,9
93

0,1
93

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

avg IPC BPRED (BIMOD) hit rate L1.I$ hit rate L1. D$ hit rate

mlzo
fin
misty1
rc6
checksum
crc32
motion
dmu
avg ImpBench

cjpeg
stringsearch
blowfish
sha
rawcaudio
avg MiBench

(%)

(a) Per-benchmark, average values.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

avg IPC BPRED (BIMOD) hit rate L1.I$ hit rate L1.D$ hit rate

1st Quartile
Min
Median
Max
3rd Quartile

(%)

(b) Box-and-whiskers plot.

Fig. 2. IPCs, I-/D-cache hit rates and branch-prediction rates

median values which are more suitable since collected data

are not guaranteed to be normally distributed in the general

case.

A. Performance, caches and branch prediction

The first characteristic we explore is benchmark perfor-

mance measured as the Instructions Per Cycle (IPC) of

each benchmark. Since IPC depends also on the cache

performance and the efficiency of the branch-prediction unit,

we include such results here as well. Accordingly, in Fig. 2,

overall average IPC, L1 I-cache and D-cache hit rates and

branch-prediction rates are depicted.

As can be seen from Fig. 2(a), ImpBench programs

achieve on average a lower IPC (0.047) than the MiBench

ones (0.063); yet, both IPCs are expectedly low. To elaborate,

in order to closely model real implantable processors, the

XTREM simulator has been modified to such a degree that

all tasks running on it are effectively ”choked” by the limited

resources left on it. That is, the intrinsic performance of

many tasks is capped by the maximum performance the

simulated processor can deliver. This is reflected in the

limited IPCs observed for both benchmark suites. However,

Fig. 2(b) captures a more prominent difference between the

two suits. Although both suite distributions are skewed closer

to their minimum values, ImpBench programs display a

wider dispersion as can be seen by the box sizes formed by

the 1st and 3rd quartile (i.e. the middle 50% of the values).

In terms of intra-benchmark variation, MiBench’s rawcau-

dio (ADPCM encoding) and sha perform apparently better

than most of the ImpBench programs while stringsearch

is scoring the lowest in MiBench and even low for many

ImpBench programs. The two compression algorithms of

ImpBench, although varied, display by far the poorest per-

formance across all benchmarks, seemingly impacted by

the limited D-cache size, as will be discussed later. For

the encryption algorithms, misty1 appears to perform better

than rc6 while, for the data-integrity algorithms, checksum’s

simpler structure clearly outperforms crc32. Last, motion, of

the real applications, although simpler, performs significantly

worse than dmu contrary to which motion displays a higher

ratio of I/O- over control- or data-intensive operations. In

effect, it reads successive data from a file (representing

motion-sensor readouts), compares them against a preset

motion threshold value and writes an activity factor to an

output file (representing a data-logging memory).

As shown in the previous section, a Bimodal branch-

prediction scheme has been used with a mere 2-entry table,

the reasons being: a) to reflect the constrained nature of an

implant processor and, b) to isolate the dynamic behavior

86
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

4
7
.1

7
6
.5

4
4

2
3
.9

3
2
.6

4
7

8
.2

1
7
.9

4
1

7
0
0
.1

7
5

9
.5

8
1
.4

2
3

1
.2

0
4
.4

5
2

1
3
,9

4

1
0
,9

0

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

m
lz
o fin

m
is

ty
1

rc
6

ch
ec

ks
um

cr
c3

2

m
otio

n
dm

u

av
g Im

pB
en

ch

cj
peg

st
rin

gse
ar

ch

blo
w
fis

h
sh

a

ra
w
ca

udio

av
g M

iB
en

ch

cc (#) instr (#) uops (#) code size (KB)

(a) Per-benchmark, average values.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

cc (#) uops (#) instr (#) code size (KB)

1st Quartile
Min
Median
Max
3rd Quartile

(b) Box-and-whiskers plot.

Fig. 3. Static code size (in KB) and dynamic code size (instruction and clock-cycle count).

of the various benchmarks. Referring back to Fig. 2, we

conclude that overall branch-prediction (BPRED) hit rates

are similar for both suites. However, contrary to the observed

IPCs, the MiBench programs display a significantly wider

dispersion of BPRED values than ImpBench. Further, the

MiBench values are strongly skewed towards the maximum

value whereas ImpBench values present a distribution closer

to the Gaussian. In effect, ImpBench programs present a

slightly less predictable but overall more consistent dynamic

behavior among them and it is interesting to note that the

range (i.e. max-min) of ImpBench BPRED values (0.333) is

quite smaller than that of MiBench ones (0.466).

Besides, fin achieves a worse BPRED rate than mlzo

and the worst overall for ImpBench programs but, still, an

almost x3 better rate than the worst MiBench program (sha).

In terms of intra-variation, encryption and data-integrity

algorithms also vary largely in behavior while the real

applications display similar profiles.

The selected I-cache configuration and the intrinsic be-

havior of the programs has yielded essentially miss-free

cache operation, as can be seen in Fig. 2(a). This behavior

is observed in the MiBench programs as well, featuring a

marginally smaller I-cache hit rate. Figure 2(b) indicates that,

in this case, value dispersion is extremely low with a slight

skew towards the maximum value, for both suites. Combined,

the two figures tell us that in terms of I-cache behavior, there

is no significant difference between the two suites.

The D-cache, on the other hand presents a different hit-

rate behavior. As seen in Fig. 2(a), ImpBench programs

feature an overall 0.211 miss rate, quite higher than its 0.193
MiBench counterpart, but both much lower than the I-cache

hit rates witnessed previously. Figure 2(b) further reveals that

the dispersion of values is moderate for both suites, with

ImpBench being marginally larger. Yet, its distribution is

again closer to the Gaussian than that of MiBench whose

values are clearly skewed towards the minimum. A last

observation to make at this point is that the lower hit rates

of the D-cache, as compared to the I-cache, reveal a strong

data-intensive nature of the biomedical applications.

B. Dynamic & static benchmark size

We, next, delve into the differences between the two

benchmark suites in terms of static and dynamic program

size. From Fig. 3 we can readily observe that, in an overall,

ImpBench programs feature a moderately smaller static size,

about 10.9 KB compared to the 13.94 KB of the MiBench

programs but their sizes are somewhat more dispersed. cjpeg

displays the overall largest static size while crc32 the overall

smallest one. In terms of intra-variation, fin is smaller than

mlzo, rc6 is smaller than misty1 while checksum is slightly

larger than crc32. dmu is much larger than motion which is to

be expected since the former implements a much larger and

more complex application. We can also notice that across the

87
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

mlzo fin

mist
y1 rc6

ch
ec

ks
um

crc
32

motio
n

dmu

av
g Im

pBen
ch

cjp
eg

str
ingse

arc
h

blowfis
h

sh
a

raw
ca

udio

av
g M

iB
en

ch

load/store/move arithmetic compare logical branch/jump

(a) Per-benchmark, average values.

0

10

20

30

40

50

60

70

80

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

load/store/move arithmetic compare logical branch/jump

1st Quartile
Min
Median
Max
3rd Quartile

(%)

(b) Box-and-whiskers plot.

Fig. 4. Relative frequencies for load/store/move, arithmetic (int/fp), compare, logic and branch/jump instructions.

repeat for all consecutive instruction triplets of the program {

let instr1, instr2, instr3 be 3 new consecutive instructions.

if (instr2.src_reg1 == instr1.dest_reg) or (instr2.src_reg2 == instr1.dest_reg)

instr2 is dependent on instr1 (pair)

if (instr3.src_reg1 == instr1 dest_reg) or (instr3.src_reg2 == instr1.dest_reg)

also instr3 is dependent on instr1 (triplet)

} end

TABLE III

INSTRUCTION-DEPENDENCY ALGORITHM.

compression and encryption categories, the algorithms which

perform better, do so at an increased code size.

In terms of dynamic behavior, which depends on the

input datasets used as well as on the intrinsic structure

of the various benchmarks, we can observe that ImpBench

programs exhibit, on average, a clock-cycle count about half

that of the MiBench ones but a much smaller dispersion

of values. This, once more, reveals the more diverse na-

ture of the biomedical applications selected. We have also

plotted the total number of executed instructions and µops.

XTREM, which is based on SimpleScalar, implements ARM

instructions through µops. We included µop statistics at

this point and in the following discussion so as to better

capture the workings of the underlying architecture. Overall,

ImpBench programs display shorter execution times (about

0.5x) but much shorter instruction/µop counts (about 0.1x)

than the MiBench ones. This agrees with the observations

we made previously regarding the IPC and attests to the

more control- and I/O-intensive nature of the biomedical

programs compared to general multimedia programs. Last,

it is interesting to observe that, although fin and crc32 have

smaller static code sizes than their respective counterparts

mlzo and checksum, they have much larger dynamic code

sizes. Given that all compression, encryption and data-

integrity algorithms operate on the same input dataset (a 10-

KB binary file of ECG readouts), these observed variations

between static and dynamic program sizes directly expose

diverse intrinsic properties of the various algorithms.

C. Instruction distribution

Having discussed overall instruction counts, we elaborate

further on the nature of the executed instructions per bench-

mark suite, i.e. the instruction mix. For the same reason as

before, we choose to profile µops rather than instructions. We

88
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

0%

5%

10%

15%

20%

25%

and
eor

eor
eor

eor
eor

and
eor

and
eor

eor
eor

eor
eor

and
eor

and
eor

and
eor
add

orr
mvn
add

mvn
add

eor
eor

and
eor

eor
eor

and
eor

cmp
sub

and
eor

eor
eor

cmp
sub

and
eor

and
eor
add

orr
mvn
add

mvn
add

eor
eor

and
eor

and
eor

eor
eor

and
eor

eor
eor

and
eor

and
eor

eor
eor

mlzo fin misty1 rc6 checksum crc32 motion dmu avg ImpBench cjpeg string
search

sha blow
fish

rawc
audio

avg
MiBench

Fig. 5. Relative frequencies of data-dependent, dynamic-instruction combinations.

have organized µops into five groups: data move (load, store,

move), arithmetic operations (INT and FP), comparison

operations, logical operations and branches (conditional and

unconditional). Only the dmu benchmark includes floating-

point operations and even that does not stress them. We wish

to adhere to the initial observation that the majority of im-

plant applications can do without or with few floating-point

calculations. In effect, FP arithmetic operations are scarce or

absent and have, thus, been merged with the INT arithmetic

operations. Overall µop mixes are shown in Fig. 4. We can

readily observe that rates of ld/st/mov, arith, cmp and logical

operations all differ significantly between the ImpBench and

MiBench programs. Overall, we notice less ld/st/mov and

cmp µops for ImpBench. Yet, there are more logical and

br/j µops further supporting the argument that biomedical

applications exhibit a more dynamic behavior than average

multimedia ones. The number of arith µops is similar for

both suites. We also observe that, all µop categories display a

larger range (max-min) of values for ImpBench compared to

MiBench. In terms of data dispersion, the ImpBench boxplots

reveal more dispersed ld/st/mov and logical µop ratios.

In terms of intra-variation, mlzo differs largely from fin in

all µop ratios, misty1 differs notably from rc6 in arith and

logical µop ratios and, with the addition of cmp ratios, so

does crc32 compared with checksum. All in all, the variation

among the various ImpBench programs is visible. A last

observation to make at this point is that logical µops are

clearly dominating the µop mix which is partly explained

by the known tendency of the utilized ARM cross-gcc to

favor the generation of logical instructions.

The XTREM simulator has been further modified to also

collect pairs and triplets of data-dependent instructions dur-

ing execution time. Data-dependent instructions have been

defined according to the simple algorithm shown in Table

III. In effect, with the previous algorithm we are scanning

for all data-dependent dynamic instructions of the program.

What we are interested in is the exact nature of those

pairs or triplets of dependent instructions. In Fig.5 we have

plotted dependent-instruction combinations for all profiled

benchmarks. We have limited the plot to only those combi-

nations appearing with a frequency of 4.5% or higher during

dynamic-code execution. With this limitation, Fig. 5 has been

plotted. It reveals that ImpBench and MiBench both favor

(heavily depending on the compiler used) predominantly

the ”and-eor” and ”eor-eor” pairs with high occurrence

frequencies (”eor”: exclusive-or operation). ImpBench once

more illustrates a higher diversity and introduces more fre-

quent instruction combinations. Namely, the pairs ”cmp-sub”

(due to dmu) and ”mvn-add” (due to checksum) as well as

the triplets ”and-eor-add” and ”orr-mvn-add” (both due to

checksum). As desired, it also captures different instruction

dependencies within the compression, the encryption, the

data-integrity and the real-programs categories.

This ”instruction-combination” metric has been monitored

since it can prove beneficial for the design of future implant

processors. When popular instruction combinations (along

with the previously discussed single-instruction frequencies)

have been identified, specific microarchitectural or architec-

tural optimizations can be made to achieve more efficient

machines. For instance, in a processor design seriously

limited by power and area constraints, to favor the execution

of ”eor-eor” or ”and-eor” pairs, only data forwarding in the

logical-operations circuitry of the ALU may be allowed to be

incorporated. Alternatively, other techniques like the known

interlock-collapsing ALUs [40] can also be considered.

D. Power consumption

A final metric to be evaluated against ImpBench and

MiBench is average power consumption of the executed

programs. This is highly relevant to embedded systems and

particularly to energy-scavenging microelectronic implants.

In Fig. 6 we have plotted the per-component and overall

average power consumption of our simulated processor.

Overall, the average power consumption of MiBench is

about 1.2x times that of ImpBench. This can be attributed

partly to the fact that most ImpBench programs have been

carefully picked for low-power applications [35], [34]. Yet,

it also indicates that they can provide meaningful means of

workload characterization for implant processors since they

implicitly respect tight power budgets ever present in the

considered application field.

Further analysis of the results indicates the most power-

hungry unit to be the memory manager (MM) for ImpBench

and MiBench programs alike, followed by the CLK, ALU,

I-cache and D-cache structures. MiBench manages to stress

89
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

0

20

40

60

80

100

120

mlzo fin

mist
y1 rc6

ch
ec

ks
um

crc
32

motio
n

dmu

Im
pBen

ch
 av

g
cjp

eg

str
ingse

arc
h

sh
a

blowfis
h

raw
ca

udio

MiB
en

ch
av

g

OTHER
D$
I$
ALU
CLK
MM

(mW)

(a) Per-benchmark, average values.

0,01

0,1

1

10

100

ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench ImpBench MiBench

MM CLK ALU I$ D$

1st Quartile
Min
Median
Max
3rd Quartile

(mW)

(b) Box-and-whiskers plot.

Fig. 6. Per-component and overall average power consumption.

the power profile of the MM more than ImpBench. The same

is true for the ALU and I-cache. However, the ImpBench pro-

grams display, in all components except for the ALU, more

data-dispersed power profiles. This finding further enforces

the initial observation that biomedical programs indeed are

more diverse in characteristics than general multimedia ones.
In terms of intra-benchmark variation, we can clearly

see that the compression algorithms display by far the

smallest power consumption across both suites. Last, with

the exception of the two data-integrity algorithms, the two

members of all other ImpBench categories vary largely

between them in terms of power, i.e. one features an average

power consumption half or double that of the other.

VII. CONCLUSIONS

A plethora of benchmark suites has been proposed so

far for a variety of application domains. Of late, workload-

characterization programs more suited to the embedded do-

main have began spurting in an attempt to better capture the

particular characteristics of embedded processors.
A special category of embedded systems with particular

design constraints is implantable, microelectronic devices.

Since their birth, such devices have been traditionally de-

signed in custom style, always attempting to squeeze the

desired functionality in an extremely limited size and with

the maximum possible safety. With the advent of mature

microelectronics and micromachining technologies as well

as more sophisticated computer-architecture and compiler

design, this trend has began to change. Continuously more

implant designers are willing (and free) to move to software-

running implant architectures to achieve their goals.

In view of more structured and educated implant proces-

sors in the years to come, we have carefully put together Imp-

Bench, a collection of benchmark programs and assorted in-

put datasets, able to capture the intrinsic of new architectures

under evaluation. We have shown that ImpBench displays

considerably different characteristics than the most related

MiBench. IPCs, data-cache hit rates, branch-prediction hit

rates, instruction frequencies and power consumption show

increased or sufficient variation compared to MiBench, to

justify a new benchmark suite.

ImpBench is a dynamic construct and, in the future, more

benchmarks will be added, subject to our ongoing research.

Among others, we anticipate simple DSP applications as

potential candidates as well as more ”real applications” like

the ones we already included.

90
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

VIII. ACKNOWLEDGEMENTS

This work has been partially supported by the ICT Delft

Research Centre (DRC-ICT) of the Delft University of

Technology. It would not have been complete without the

valuable contributions of Gilberto Contreras for providing

an excellent power simulation tool and support as well as of

Peter Cross for providing the original sources for the DMU

application. Also, many thanks are due to Carlo Galuzzi for

his valuable comments and help throughout.

REFERENCES

[1] H. Ector and P. Vardas, “Current use of pacemakers, implantable
cardioverter defibrillators, and resynchronization devices: data from
the registry of the european heart rhythm association,” European Heart

Journal Supplements, vol. 9, pp. 144–149, August 1988.
[2] C. Strydis, G. Gaydadjiev, and S. Vassiliadis, “Implantable microelec-

tronic devices: A comprehensive review,” Computer Engineering, Delft
University of Technology,” CE-TR-2006-01, December 2006.

[3] P. Wouters, M. D. Cooman, D. Lapadatu, and R. Puers, “A low
power multi-sensor interface for injectable microprocessor-based an-
imal monitoring system,” in Sensors and Actuators A: Physical, vol.
41-42, 1994, pp. 198–206.

[4] B. Flick and R. Orglmeister, “A portable microsystem-based telemetric
pressure and temperature measurement unit,” in IEEE Transactions on

Biomedical Engineering, vol. 47, Jan. 2000, pp. 12–16.
[5] M. Shults, R. Rhodes, S. Updike, B. Gilligan, and W. Reining,

“A telemetry-instrumentation system for monitoring multiple sub-
cutaneously implanted glucose sensors,” in IEEE Transactions on

Biomedical Engineering, vol. 41, Oct. 1994, pp. 937–942.
[6] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, and P. Dario,

“An implantable telemetry platform system for in vivo monitoring
of physiological parameters,” in IEEE Transactions on Information

Technology in Biomedicine, vol. 8, Sept. 2004, pp. 271–278.
[7] M. Min, T. Parve, V. Kukk, and A. Kuhlberg, “An implantable

analyzer of bio-impedance dynamics - mixed signal approach,” in
IEEE Instrumentation and Measurement, Budapest, Hungary, 21-23
May 2001, pp. 38–43.

[8] J. Berkman and J. Prak, “Biomedical microprocessor with analog
I/O,” in IEEE International Solid-State Circuits Conference - Digest

of Technical Papers, 19 February 1981, pp. 168–169.
[9] C. Harrigal and R. Walters, “The development of a microprocessor

controlled implantable device,” in IEEE Proceedings of the 1990

Sixteenth Annual Northeast Bioengineering Conference, Mar. 1990,
pp. 137–138.

[10] J. Warren, R. Dreher, R. Jaworski, J. Putzke, and R. Russie, “Im-
plantable cardioverter defibrillators,” in Proceedings of the IEEE,
vol. 84, 1996, pp. 468–479.

[11] B. Smith, Z. Tang, M. Johnson, S. Pourmehdi, M. Gazdik, J. Buckett,
and P. Peckham, “An externally powered, multichannel, implantable
stimulator-telemeter for control of paralyzed muscle,” in IEEE Trans-

actions on Biomedical Engineering, vol. 45, 1998, pp. 463–475.

[12] M. Sawan, S. Robin, B. Provost, Y. Eid, and K. Arabi, “A wireless
implantable electrical stimulator based on two FPGAs,” in Proceedings

of the IEEE International Conference on Electronic Circuits and

Systems (ICECS), vol. 2, Piscataway, New Jersey, USA, 1996, pp.
1092–1095.

[13] M. Schwarz, L. Ewe, R. Hauschild, B. Hosticka, J. Huppertz, S. Kolns-
berg, W. Mokwa, and H. Trieu, “Single chip CMOS imagers and
flexible microelectronic stimulators for a retina implant system,” in
Sensors and Actuators A: Physical, vol. 83, 22 May 2000, pp. 40–46.

[14] “Medtronic - Cardiology product list,” http://www.medtronic.com/
physician/cardiology.html.

[15] M. Ghovanloo and K. Najafi, “A modular 32-site wireless neural
stimulation microsystem,” in IEEE Journal of Solid-State Circuits,
vol. 39, December 2004, pp. 2457–2466.

[16] P. Mohseni and K. Najafi, “Wireless multichannel biopotential record-
ing using an integrated FM telemetry circuit,” in 26th Annual Interna-

tional Conference of the IEEE in Engineering in Medicine and Biology

Society (EMBS), San Francisco, CA, USA, 1-5 September 2004, pp.
4083–4086.

[17] H. Park, H. Nam, B. Song, and J. Cho, “Design of miniaturized teleme-
try module for bi-directional wireless endoscopy,” IEICE Transactions

on Fundamentals on Electronics, Communications and Computer

Sciences, vol. 6, pp. 1487–1491, June 2003.
[18] C. Liang, J. Chen, C. Chung, C. Cheng, and C. Wang, “An implantable

bi-directional wireless transmission system for transcutaneous biolog-
ical signal recording,” Physiological Measurement, vol. 26, pp. 83–97,
February 2005.

[19] P. Cross, R. Kunnemeyer, C. Bunt, D. Carnegie, and M. Rathbone,
“Control, communication and monitoring of intravaginal drug delivery
in dairy cows,” in International Journal of Pharmaceuticals, vol. 282,
10 September 2004, pp. 35–44.

[20] H. Lanmuller, E. Unger, M. Reichel, Z. Ashley, W. Mayr, and
A. Tschakert, “Implantable stimulator for the conditioning of den-
ervated muscles in rabbit,” in 8th Vienna International Workshop on

Functional Electrical Stimulation, Vienna, Austria, 10-13 September
2004.

[21] “SPEC CPU2006,” http://www.spec.org/cpu2006/.
[22] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and

R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” IEEE International Workshop on Workload Char-

acterization, pp. 3–14, 2 December 2001.
[23] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a

tool for evaluating and synthesizing multimedia and communications
systems,” 30th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pp. 330–335, 1-3 Dec 1997.
[24] “EEMBC,” http://www.eembc.com.
[25] G. Memik, W. H. Mangione-Smith, and W. Hu, “NetBench: a bench-

marking suite for network processors,” in IEEE/ACM international

conference on Computer-aided design (ICCAD’01), Piscataway, NJ,
USA, 2001, pp. 39–42.

[26] T. Wolf and M. Franklin, “CommBench-a telecommunications bench-
mark for network processors,” in IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS’00), Washing-
ton, DC, USA, 2000, pp. 154–162.

[27] M. Oberhumer, “LZO v2.0.2,” http://www.oberhumer.com/
opensource/lzo/.

[28] Y. Law, J. Dourmen, and P. Hartel, “Survey and benchmark of block
ciphers for wireless sensor networks,” ACM Transactions on Sensor

Networks, vol. 2, pp. 65–93, February 2006.
[29] R. Braden, D. Borman, and C. Partridge, “Computing the internet

checksum,” SIGCOMM Comput. Commun. Rev., vol. 19, no. 2, pp.
86–94, 1989.

[30] N. de Vries, “Lossless Data-Compression Kit, LDS v1.3,” http://www.
nicodevries.com/nico/lds13.zip.

[31] “Cell Relay Retreat: CRC-32 Calculation, Test Cases and HEC Tuto-
rial,” http://cell.onecall.net/cell-relay/publications/software/.

[32] H. Ohta and M. Matsui, A Description of the MISTY1 Encryption

Algorithm, United States, 2000.
[33] S. Slijepcevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, and M. Srivas-

tava, “On communication security in wireless ad-hoc sensor networks,”
Enabling Technologies: Infrastructure for Collaborative Enterprises

(WET ICE’02), pp. 139–144, 2002.
[34] C. Strydis and G. Gaydadjiev, “Profiling of lossless data-compression

algorithms for a novel biomedical-implant architecture,” in To appear

in IEEE/ACM International Conference on Hardware-Software Code-

sign and System Synthesis (CODES’08), Atlanda, Georgia, USA, 19-
24 October 2008.

[35] C. Strydis, D. Zhu, and G. Gaydadjiev, “Profiling of symmetric
encryption algorithms for a novel biomedical-implant architecture,”
in ACM International Conference on Computing Frontiers (CF’08),
Ischia, Italy, 5-7 May 2008, pp. 231–240.

[36] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh, “XTREM:
A Power Simulator for the Intel XScale Core,” in LCTES’04, 2004,
pp. 115–125.

[37] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an infrastructure
for computer system modeling,” IEEE Computer, vol. 35, no. 2, pp.
59–67, February 2002.

[38] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in ISCA’00,
2000, pp. 83–94.

[39] Intel XScale Microarchitecture for the PXA255 Processor: User’s

Manual, Intel Corporation, March 2003.
[40] S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock collapsing ALU’s,”

IEEE Transactions on Computers, vol. 42, no. 7, pp. 825–839, Jul
1993.

91
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 3, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

