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ABSTRACT

The Inferior-Olivary nucleus (ION) is a well-charted region
of the brain, heavily associated with sensorimotor control
of the body. It comprises ION cells with unique properties
which facilitate sensory processing and motor-learning skills.
Various simulation models of ION-cell networks have been
written in an attempt to unravel their mysteries. However,
simulations become rapidly intractable when biophysically
plausible models and meaningful network sizes (≥100 cells)
are modeled. To overcome this problem, in this work we port
a highly detailed ION cell network model, originally coded in
Matlab, onto an FPGA chip. It was first converted to ANSI
C code and extensively profiled. It was, then, translated to
HLS C code for the Xilinx Vivado toolflow and various al-
gorithmic and arithmetic optimizations were applied. The
design was implemented in a Virtex 7 (XC7VX485T) de-
vice and can simulate a 96-cell network at real-time speed,
yielding a speedup of ×700 compared to the original Matlab
code and ×12.5 compared to the reference C implementation
running on a Intel Xeon 2.66GHz machine with 20GB RAM.
For a 1,056-cell network (non-real-time), an FPGA speedup
of ×45 against the C code can be achieved, demonstrat-
ing the design’s usefulness in accelerating neuroscience re-
search. Limited by the available on-chip memory, the FPGA
can maximally support a 14,400-cell network (non-real-time)
with online parameter configurability for cell state and net-
work size. The maximum throughput of the FPGA ION-
network accelerator can reach 2.13 GFLOPS.
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1. INTRODUCTION
Artificial Neural Networks (ANNs) have been successfully

used in robotics and artificial-intelligence applications on
numerous occasions in the past [7]. Contrary to the typi-
cal, Von-Neumann-based computing model, a biologically-
inspired ANN does not execute explicit sequential instruc-
tions to solve its computational problems. In such a network,
functions across nodes (or neurons) are evaluated concur-
rently and the relation between the input and output of the
ANN is determined by the network topology and method
of interconnectivity. This topology can also be dynamically
adaptive, subject to the ongoing neural computations, thus
mimicking biological behavior known as plasticity.

Advances in neuroscience and greater understanding of
the brain have gradually led to the creation of mathemati-
cal models of neurons and whole networks that do not simply
mimic biological behavior in an abstract way but simulate
it with significant detail. Such an example is the Spiking
Neural Network (SNN). Here, information is not just trans-
ferred by the firing rate of each neuron in the network as is
the case in classical ANNs but by the transfer of spikes [19].
Due to the SNNs’ ability to model additional neuron charac-
teristics and adapt them according to spike-train amplitude,
frequency and precise arrival times, SNNs can have greater
computational and predictive power than Artificial-Neural-
Networks (ANNs) [14]. This, alongside with the advances of
technology in computer science and engineering, has opened
the possibility of implementing larger-scale NNs that have
the ability to more accurately simulate brain behavior.

The United-States-National-Academy of Engineers has clas-
sified brain simulation as one of the Grand Engineering Chal-
lenges [16]. Biologically accurate brain simulation is a highly
relevant topic for neuroscience for a number of reasons:
(1) Accelerated brain research: Neuroscientists plan to gain
greater understanding of brain behavior by simulations based
on biologically accurate models. Depending on the complex-
ity of the model, it can provide insights ranging from single-
cell behavior to network dynamics of whole brain regions
without having to perform in-vivo experiments. (2) Brain
rescue: If brain functions can be simulated accurately enough
and in real-time, this can lead (a) Medium-turn, to seamless
brain-rescue devices with various medical and other applica-
tions; and (b) long-term, to robotic prosthetics and implants
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for restoring lost brain functionality in patients. (3) Ad-
vanced A.I.: ANNs have already been successfully used in
this field even though they have not even remotely reached
the computational capacity of biological systems. It is be-
lieved that greater understanding of biological systems and
their richer computational dynamics can lead to more ad-
vanced, bio-inspired, artificial-intelligence (AI) models for
autonomous and robotic applications. (4) New computer-
architecture paradigms: Alternatives to the typical Von-Neu-
mann architectures can be very useful for massively paral-
lel applications and could potentially provide defect-tolerant
systems emulating the brain’s adaptability.

The main challenge in building complex, biologically ac-
curate SNNs lies largely in the computational and commu-
nication load of the network simulations. Furthermore, bi-
ological NNs execute these computations with massive par-
allelism, something that conventional CPU-based execution
cannot cope with very well. As a result, the neuron-population
size and interconnectivity are quite low when running on
PCs (with models implemented in MATLAB or neuromodel-
ing languages such as NEURON and GENESIS). This greatly
impedes the efficiency of brain research in relation to the
goals of brain simulation stated above.

A good alternative would be the execution of neuron mod-
els in GPUs. GPUs can exploit application parallelism bet-
ter and, thus, can be more efficient in running neuron mod-
els. Yet, in the case of complex models or very large-scale
networks, they may not be able to provide real-time perfor-
mance (i.e. to produce results for every network cell within
the time allotted by the model simulation step) due to the
high rates of data exchange between the neurons [8]. More-
over, GPUs are inefficient in terms of energy and power.

Another alternative would be the use of supercomputers.
Although these systems can emulate the behavior and paral-
lelism of biological networks with sufficient speed, the sheer
size and complexity of these solutions makes them useful
only for behavioral simulations. Supercomputer deployments
require immense space, implementation, maintenance and
energy costs while lacking any kind of mobility.

Mixed-signal VLSI is another option for simulating SNNs.
Such designs achieve adequate simulation speeds while sim-
ulating the biological systems more accurately since they
model neurons through analog signals, just like their biolog-
ical counterparts. However, mixed-signal VLSI designs are
much more difficult to implement, lack flexibility and often
suffer from problems typical in analog design; for instance,
accuracy issues and reduced reproducibility of results due to
transistor mismatching, leakage currents, crosstalk etc. [3].

Implementing the neural network in parallel, digital hard-
ware can efficiently match the parallelism of biological mod-
els and provide real-time or hyper-real-time performance
useful for simulations, prosthetics and robotics applications.
While ASIC design is certainly an option, it is expensive,
time-consuming and – most importantly – inflexible: An
ASIC cannot be altered after fabrication, yet model changes
often required in fitting novel neuron models would require
a new development cycle, just like mixed-signal VLSI.

Most of these issues can be tackled through the use of
FPGAs. FPGAs, although slower than ASICs, still pro-
vide enough performance for real-time and hyper-real-time
neuron simulations, exploiting the inherent parallelism of
hardware. Besides requiring a lot less energy and, in some
cases, less space than most of the above solutions for the

same computational power, the reconfiguration property of
FPGAs provides the flexibility of modifying brain models
on demand. This flexibility is substantially enhanced by the
use of high-level synthesis tools which speed up the develop-
ment process; manually developing the hardware description
every time a new brain model is released or an existing one
is re-calibrated would be impractical and time-consuming.
Besides, dynamic reconfigurability can provide a way to em-
ulate the plasticity of biological neural networks in ways
other solutions cannot.

In this paper we present an FPGA-accelerated applica-
tion for a specific, biophysically-meaningful NN model, us-
ing single-precision floating-point (FP) arithmetic compu-
tations. The application models the network of one of the
essential areas for the function of the cerebellum, the Inferior
Olive. Concisely, the contributions of this work are:

• The analysis of the Inferior Olive model to recognize
characteristics and possible performance bottlenecks.

• The optimization of the original model algorithm achiev-
ing ×2 performance improvement in hardware.

• The design, implementation and validation of the FPGA-
based accelerator, achieving ×45 speedup compared to
C and 96 neurons simulated at real-time.

• The performance evaluation of the designed accelera-
tor and evaluation of precision error, issued by design
optimizations, to guarantee preservation of the biolog-
ical behavior reflected in the original model.

The rest of the paper is organized as follows: Section 2
presents background information necessary to tackle the neu-
romodeling problem at hand. Section 3 gives an overview
of related works in the field. Section 4 covers the descrip-
tion of the Inferior Olive Model and presents application
profiling results. Section 5 describes the FPGA-based Infe-
rior Olive design and architecture. Section 6 presents the
area, performance and error evaluation, while also present-
ing a comparison to other FPGA-based SNN applications.
Finally, Section 7 concludes this paper.

2. BACKGROUND
In this section, background information on the biological

structures of interest and the modeling approaches thereof
will be presented. This information will help to better grasp
the implementation and evaluation phases of this work.

2.1 The Biological Neuron
Neurons are electrochemically excitable cells1 that process

and transmit signals in the brain. The biological neuron
comprises in general (although, in truth is a much more
complicated system) three parts (called compartments in
neuromodeling jargon): The Dendrites, the Soma and the
Axon. The dendritic compartment represents the cell input
stage. The dendrites pick up electrochemical stimuli from
other cells and transfer them to the soma. In turn, the
soma processes the stimuli and translates them into a cell
membrane potential, which evokes a cell response called an
action potential or, simply, a spike. This response is trans-
ferred through the axon, which is the cell output stage, to

1We will use the terms neuron and (neural) cell interchange-
ably throughout the paper.
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other cells. An electrochemical connection between two cells
(axon-dendrite) is referred to as a synapse.

2.2 The Cerebellum and the Inferior Olive
The cerebellum is one of the most complex and tightly

packed regions in the brain, playing an important role in
sensorimotor control. It does not initiate movement but in-
fluences the sensorimotor region in order to precisely coordi-
nate the body’s activities and motor learning skills. It also
plays an important role in the sensing of rhythm, enabling
the handling of concepts such as music or harmony.

The Olivocerebellar circuitry – of which the Inferior Oli-
vary Nucleus (ION) is a part – is a relatively well-charted
region of the cerebellum [6]. The ION (comprising the so-
called ION cells) provides one of the two main inputs to the
cerebellar system: the climbing fibers. ION cells are also in-
terconnected by purely electrical connections between their
dendrites, called gap junctions, considered to be important
for the synchronization of activity within the nucleus and,
thus, greatly influencing movement and motor learning.

2.3 Neural Modeling
There is a number of mathematical models describing the

behavior of spiking-neuron compartments and neuron net-
works [13]. The more complex the model, the better it can
emulate biological dynamics and can more accurately rep-
resent its biological counterpart. The simplest models are
the Integrate-and-Fire (IaF) which model very basic spik-
ing behavior. An IaF model essentially implements a spike-
integrator function. When the membrane potential sur-
passes a certain threshold the neuron fires an output spike.

A more advance neuron model is the Izhikevich [12] neu-
ron. With only 2 equations and 4 parameters the model
can recreate all main behavioral neuron patterns in terms
of input/output behavior. But if the goal is to simulate
and study the neuronal behavior in greater detail (like de-
tails of the ionic and chemical channels of the cell) or create
multi-compartmental models, one has to use biophysical-
ly-meaningful models, like conductance-based models.

Conductance-based models are complex and dynamic rep-
resentations of neurons that can even be biophysically mean-
ingful; that is, models that can accurately model the internal
mechanisms and state of a cell. The most important such
model is the so-called Hodgkin-Huxley (HH) model dating
back in 1952 [11]. The model uses 4 equations and dozens
of parameters to describe in detail the electrical activity in
the cell. This activity results from the combination of exter-
nal changes in the membrane potential and in the internal
concentrations of the main chemical components involved in
the transmission of neural-signals: calcium, potassium and
sodium. However, this high modeling accuracy comes at the
cost of complexity. HH models tend to be orders of mag-
nitude more computationally intensive compared to other
types, making efficient simulation a challenge. As explained
in the next sections, in this work we accelerate an extended
HH model for Inferior-Olive neurons.

3. RELATED WORK
In the past, a number of designs have been proposed

for the implementation of neuron and network models in
FPGAs. In this section, we present some of the most notable
past works in the field.

Shayani et al. [18, 17] proposed a neuron model using a
Quadratic IaF model [10, 9] which enabled simulating ex-
tra dendritic and axonal properties. The system supported
on-line network-topology adaptation. Each neuron had 16
synapses and the maximum network size was 161 neurons.
The simulation ran at ×4210 faster than real-time on a Vir-
tex 5 FPGA. The authors estimated that they could simulate
a little above 1000 neurons at real-time, provided that they
utilized the whole FPGA chip.

Two of the most notable implementations using Izhike-
vich neurons are the designs proposed by Cheung et al. [5,
4] and by Moore et al. (Bluehive [15]). Each approach
proposed an FPGA architecture for very large-scale SNNs
which is event-driven for optimizing the network traffic and
the assorted memory-bandwidth needs. This optimization
is based on the fact that new neuron states do not need
to be calculated at every single time step but only in the
instances that a new input arrives at the neuron, as oth-
erwise the neuron state would not change. To improve on
their initial memory-bandwidth requirements [4], Cheung et
al. replaced the FPGA board with a Maxeler Dataflow Ma-
chine [5]. This FPGA-based device features state-of-the-art
memory systems that increase the bandwidth capabilities
greatly compared to simple FPGA boards. As a result, the
size of the implemented network achieved was 64K neurons,
each having about 1000 synaptic connections to neighbor-
ing neurons. In the Bluehive device, Moore et al. took
another approach: They used external DDR2 RAMs and
built custom-made SATA-to-PCI connections for stacking
FPGA devices for facilitating large SNN simulations. Only
a small portion of data was stored on-board the FPGAs. In
a Stratix IV FPGA, the authors simulated 64K Izhikevich
neurons with 64M simple synapses at real-time performance.

These works (as most others in the field) have incorpo-
rated fixed-point arithmetic to implement the computation
of their neuron models. Zhang et al. [20] have proposed a
somatic and dendritic HH-accelerator processor using dedi-
cated FP units. The FP units were custom-designed to pro-
vide better accuracy, resource usage and performance. The
32-bit FP arithmetic used in the model produced a neuro-
processor architecture which met a real-time-performance
demand. The architecture also included advanced synapses.
The system could simulate 4 complete cells (synapse, den-
drite, soma) at real-time speed.

Beuler et al. [2] proposed a system for studying firing syn-
chronization of NNs through gap junctions. They used a
custom-made simplified model of a HH neuron. The main
hardware component was the NepteronCore, also using 32-
bit FP arithmetic. The system achieved real-time simulation
speeds and included a simple GUI for parameter setup. The
maximum size of the network was 400 neurons.

4. APPLICATION DESCRIPTION
The application studied in this paper models the behavior

of the ION neurons as an important module of the olivocere-
bellar circuit. We have chosen this state-of-the-art model as
a first step towards building a high-performance olivocrebel-
lar simulation platform. The model not only divides the cells
in multiple compartments but also creates a network onto
which neurons are interconnected. Although the single-cell
model is described first, the rest of the paper deals with the
cell-network model, also described in the coming sections.
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Figure 1: Illustration of (a) a 6-cell network-model
example and (b) the 3-compartmental model of a
single ION cell.

4.1 The ION-cell model
The ION cell model we have implemented has been orig-

inally developed by de Gruijl et al. [1]. The model is an
extension of the original HH-based model [11] and divides
the neuron into three computational compartments – closely
resembling their biological counterparts – as shown in Fig-
ure 1(b). For every compartment, a few chemical channels
are present in the model so as to contribute to the total com-
partment potential. Every compartment has a state that
holds the electrochemical variables and, on every simulation
step, the state is updated based on: i) the previous state,
ii) the other compartments’ previous state, iii) the other
neuron’s previous state and iv) the externally evoked input.

The computational model operates in a fashion that allows
concurrent execution of the three compartments. The model
is calibrated to produce every per-neuron output value with
a 50 µsec time step. This means that, in order to support
real-time simulations, all neurons are required to compute
one iteration of compartmental calculations within 50 µsec.
Due to the realistic electrochemical variables handled by the
model, most of the computations require FP arithmetic.

4.2 The ION-network model
Figure 1(a) illustrates the network-model architecture with

an example size of 6 cells. Every cell receives, through the
dendritic compartment, the influence of all other cells in the
network, thus modeling the massive biological gap junctions
present in the Inferior Olive. For the analysis in the coming
sections, we divide the dendritic compartment further into
two parts to separate the gap-junction modeling from that
of the pure dendritic computations. As illustrated in Fig-
ure 1(b), the dendrites in every cell also receive an externally
evoked input current while the axonal voltage of all cells is
considered the external output. The system works in lock-
step computing discrete output values (with a 50 µsec time
step) that, when aggregated in time, contribute to form the
electrical waveform response of the system. The ION net-
work must be synchronized in order to guarantee the correct
exchange of cell state data when multiple cells and compart-
ments are being computed simultaneously.

4.3 C-code profiling
The ION-network model was initially available to us in

Figure 2: Software profiling of the computation time
taken by the various compartments in the ION-cell
model.

Figure 3: Software profiling of the arithmetic opera-
tions in the model for a 96-cell, fully interconnected
network.

Matlab but was re-written in C for various analysis purposes
and so as to be used in a High-Level Synthesis (HLS) tool.
Next, we present profiling results that give insights on the
distribution of computations performed in the model.

Figure 2 shows the execution-time distribution of the vari-
ous model compartments (program functions). The numbers
presented were obtained with GProf on an Intel Core i7 3770
(3.4 GHz, 8GB RAM, Ubuntu 12.04 OS). The gap-junction
computations are shown separately from the dendrites. This
division has been made in order to stress the fact that, in
this fully connected ION-network model, gap-junctions com-
putations take up most of the execution time. The reason is
that they need to be repeated as many times as the network
size for every individual neuron being simulated. Moreover,
it should be noted that the total amount of gap-junction
computations in the network grows exponentially with the
number of cells. Next in terms of computational load is the
Soma compartment due to the multiple and complex elec-
trochemical channels that are modeled. Last is the Axon
compartment because it only models two such channels.

Figure 3 shows the profiling of the arithmetic operations
performed in the model, for one iteration of the whole ION-
network. We differentiate the operations belonging to the
gap-junction compartment from the rest again, to show its
importance. Results show that (FP) multiplications per-
formed in the gap-junction compartment dominate the dis-
tribution. Finally, we can see that the gap junctions contain
the largest fraction of operations for all operation types and
will, therefore, consume more FPGA resources.

5. FPGA-BASED OLIVOCEREBELLAR

NEUROMODELING
After profiling the C code based on the Matlab model, we

used it as the basis for generating the proposed hardware
solution using the Vivado HLS tool. The resulting hard-
ware accelerator simulates the behavior of multiple ION-cells
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step by step based on the aforementioned model. The hard-
ware accelerator is designed to work alongside a softcore or
host CPU that controls the total number of simulation steps
and handles the I/O of the accelerator. The CPU feeds the
accelerator with initialization data (initial state) and with
evoked-current inputs (external stimuli of neurons) and out-
puts the result of the computations at every simulation step.
Output data can be stored in on-board memory (e.g., SD
cards) or sent to an off-board PC host.

Both, neuron states and evoked inputs – required at ev-
ery simulation step – are stored in on-chip BRAMs, so as
to avoid incurring off-chip latency. The performance bene-
fit of using on-chip storage is substantial compared to going
off-chip, especially for complex models such as ours, which
require handling large amounts of data to represent the net-
work state. On the other hand, this creates a constraint
on the maximum network size that can be simulated, which
depends on the storage capacity of the FPGA BRAMs.

The remainder of this section offers the details of our
FPGA-based approach and the optimizations performed to
improve the performance and area efficiency of our design.

5.1 Overview of the hardware design
The general block diagram of the proposed system can be

seen in Figure 4. The actual execution is performed at the
“ION Network” component, which consists of multiple iden-
tical parallel neuron-processing modules, each modeling the
dendrite, soma and axon parts of a single ION cell. Our de-
sign further includes a set of BRAMs for storing the evoked
inputs to the neurons as well as their state, which is updated
after each simulation step. The execution flow of the ION
network is controlled by a – local to the accelerator – kernel
control unit. Our actual implementation of the ION net-
work consists of eight hardware neuron-processing modules,
which are able to simulate eight ION-cells in parallel.

The accelerator was designed to give run-time control over
a number of simulation parameters, providing flexibility and
the ability for more complex experiments. During execution,
each neuron state parameter can be modified. Interconnec-
tivity density is also adjustable during simulation.

Next, we describe the functionality of our FPGA-based
accelerator. First, the neurons in the network are initial-
ized with data streamed from the CPU to the FPGA. The
initialization data are either produced by the CPU itself or
read by on- or off-board resources. This introduces a delay
(discussed in Section 6) which is however paid only once at
the ION-network simulation onset.

After initialization, the actual execution of the network
simulation is performed. Each simulation step begins with
storing new evoked inputs of the neurons in BRAM, rep-
resenting the network external input vector. Following the
storing of this vector, the kernel-control copies to dedicated
BRAM banks part of the other cells’ state (the dendritic
voltages) needed for computing the gap-junction effect. Each
hardware neuron-processing module has a separate dual-
port, BRAM bank to store its respective gap-junction data.
By making this design choice, we improve the memory band-
width during the gap-junction processing and allow the HLS-
tool scheduling techniques to maximize parallelism. This
would not be possible if both compartment and gap-junction
logic shared the same memory banks.

With all input data ready, the next state of each neu-
ron is computed. Each hardware neuron-processing module

Input from 
other cells 
and outside
world

IO Cell

D = Dendrite 
S = Soma
A = Axon

Network Cell states 

and evoked inputs 

Block Ram

IO

Network

NN Control Signals

Kernel 

Control

Gap Junction Input 

Memory Banks

FPGA 

Chip

Figure 4: Block diagram of the Olivocerebellar neu-
romodeling hardware design.

executes in parallel. It is worth noting that all three com-
partments (dendrite, soma, axon) within a neuron module
could execute in parallel, as they have no dependencies with
each other. In practice, the axon and soma execute sequen-
tially (soma first, axon second) to save on resources, while
the dendrite compartment executes concurrently with the
axon and the soma. That is due to the execution time of
the dendrite which is longer than that of the axon and soma
compartments combined. The final phase of the execution
involves storing the newly produced ION-cell states in the
BRAMs, to be used in the next simulation step, and stream-
ing the output values needed by the experiment outside the
accelerator. For our test cases, this output is the axon volt-
age of each neuron for every simulation step, representing
the ION-network response. Presumably, the output could
be any part of the neuron states, depending on the require-
ments of the neuroscientific experiment.

5.2 Time-multiplexing execution
For the accelerator to achieve real-time performance, each

simulation step must be completed within the same time
window of 50 µsec. Obviously, such a ”real-time” constraint
does not have a counterpart in biological neurons (that fea-
ture continuous function). It is imposed by our ION network
simulator which is a self-contained, fixed-timestep, transient
simulator – similar to most HH-based simulators – with a
constant step ∆t = 50µsec in our case. Respecting this
time-step duration is essential for generating biologically-
plausible signals that can be interfaced to living tissue.

Of course, our hardware neuron network (and hardware
modules in general) runs significantly faster than the real-
time constraint at hand. We exploit this latency slack by
using our hardware resources more efficiently and maximiz-
ing the number of simulated neurons by time-multiplexing of
hardware blocks. More precisely, we use the same hardware
neuron-processing module multiple times within a simula-
tion step to compute states of different simulated neurons.
As illustrated in Figure 5, each hardware neuron-processing
module evaluates multiple simulated neurons that together
comprise the total simulated network. By online adjust-
ing the number of simulated cells each hardware neuron
is simulating (i.e. the time-multiplexing factor), the net-

93



Cell cluster within network created by each 

hardware cell time-multiplexed

Hardware Cells

Simulated

Cells 

by time-

muxing

Figure 5: Time multiplexing of hardware neurons.

work size can be altered without re-synthesizing the hard-
ware kernel, even during the simulation, if experiments in-
deed require it (for instance, to emulate synaptic plasticity).
This is achieved by storing different input vectors and cell
states for each simulated neuron evaluated in each hardware
neuron-processing module. However, the input vectors and
cell states need to be stored in the BRAM; this ultimately
means that the maximum network size shall be constrained
by the amount of available of on-chip memory. The BRAMs
are statically allocated before synthesis to support the max-
imum number of possible simulated cells at runtime.

5.3 HLS C-Code Optimizations
A number of optimizations for increasing the efficiency

and performance of the hardware design were implemented
in the C code, motivated by code inspection and the pro-
filing information presented in Section 4.3. According to
profiling results of the reference C code, the most computa-
tionally intensive compartment in the model is the dendrite,
more specifically, the gap-junction computations. These are
responsible for accumulating the influence of all other neu-
rons in the network and include complex arithmetic oper-
ations such as FP exponents and divisions performed for
every other cell state, as shown in Listing 1. In such an all-
to-all interconnected network, the amount of gap-junction
computations increases exponentially with the network size.

Listing 1: Original gap-junction code.
for (i=0; i<ION_N_INPUT ; i++) {

V = prevVdend - neighVdend [i];
f = 0.8 * exp (-1 * V * V/100) + 0.2;
Ic = Ic + (CONDUCTANCE * f * V);

}

return Ic ;

Without changing the actual functionality described in
Listing 1, we rewrote and simplified the gap-junction code.
As shown in Listing 2, we removed from the for-loop any
operations that are common for all iterations, thus reducing
the required computations substantially. More precisely, the
mathematical expression implemented by the code in List-
ing 1 was modified as shown in Formula (1). In other words,
we removed computations simulating the total gap-junction
influence (Ic) from the accumulation loop, saving three mul-
tiplications and one addition per for-loop iteration. In the
optimized code, the gap junctions accumulate only the input
parameters of Ic and computes the total influence only once,
after the accumulation has been completed. This modifica-
tion yielded a notable increase in the network size supported
by our design for real-time simulations.

Design Area Real-Time One Cell
Network Size Latency

Baseline 99% of LUTs 48 cells 603 cycles
Opt1 99% of LUTs 84 cells 347 cycles
Opt2 96% of LUTs 96 cells 333 cycles
Opt3 91% of LUTs 96 cells 323 cycles

Table 1: Synthesis Estimation for each optimiza-
tion case with Vivado HLS 2013.2 for a Virtex 707
evaluation board. Opt1: Gap-junction calculations’
optimizations. Opt2: Division-by-constant replace-
ment in dendritic compartment. Opt3: Division-by-
constant replacement in all 3 compartments.

Listing 2: Optimized gap-junction code.
for (i=0; i<ION_N_INPUT ; i++) {

V = prevVdend - neighVdend [i];
f_new = V * exp (-1 * V * V/100) ;
F_acc =+ f_new;
V_acc =+ V;

}

Ic = CONDUCTANCE * (0.8* F_acc + 0.2* V_acc);
return Ic ;

Ic =

i=N−1∑

i=0

(C ∗ fi ∗ Vi)

= C ∗

i=N−1∑

i=0

(0.8 ∗ exp(−1 ∗ Vi ∗

Vi

100
) + 0.2) ∗ Vi)

= C ∗ (0.8 ∗

i=N−1∑

i=0

[Vi ∗ exp(−1 ∗ Vi ∗

Vi

100
)] + 0.2 ∗

i=N−1∑

i=0

∗Vi)

= C ∗ (0.8 ∗

i=N−1∑

i=0

f newi + 0.2

i=N−1∑

i=0

∗Vi)

where C is the CONDUCTANCE and N the ION N INPUT.
(1)

A second modification in the original code that helped in-
crease both performance and area efficiency was the replace-
ment of any division-by-constant with an arithmetic equiva-
lent (but less computationally intensive) multiplication-by-
constant (e.g. A

100
⇔ A ∗ 0.01). In computer arithmetic,

the above modifications can introduce precision error in the
computations performed; in the evaluation section we mea-
sure the effect of our optimization in the quality of the simu-
lations. As shown next, the ION-model computations have
a large number of divisions-by-constant operations the re-
placement of which can influence both area and performance
without introducing a significant precision error that would
affect correct model behavior. This optimization had to be
performed manually as the HLS tool does not support it
automatically so as to avoid introducing potential precision
error without the developer’s consent.

In Table 1, we can see the performance and area benefits
for the application, for each code modification. Opt1 denotes
the gap-junction code modifications. The other two opti-
mizations refer to the replacement of divisions-by-constant
with multiplications-by-constant. Opt 2 replaces divisions
only in the slowest part of the model (dendrite compart-
ment), while Opt3 in the entire code. We initially attempted
replacing the divisions only in the dendrite, since our main
concern is performance while making sure that the arith-
metic error would not be significant. As Opt1 and Opt2 had
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Design Speed-up

C Code – Double Floats ×58.64
C Code – Single Floats ×60.82
FPGA Accelerator ×731.23

Table 2: Speed-up of C implementations and the
FPGA-based accelerator compared to original Mat-
lab code for simulating a real-time network.

only favored the dendrite/gap-junction compartments, Opt3
was eventually also deemed useful as the balance changed
and it lead to an extra performance benefit.

Overall, these modifications achieved an almost 50% de-
crease in single-neuron execution latency, doubling the max-
imum network size able to be simulated at real-time speed.
There is also some area improvement which is not substan-
tial due to the fact that both multiplications and divisions
use in – most cases – the same number of DSP slices.

6. EVALUATION
We evaluate, next, the performance and area cost of our

proposed approach and measure its speedup compared to a
software implementation. Moreover, we estimate the pre-
cision error after our modifications and, finally, discuss the
efficiency of our approach compared to other related works.

6.1 Experimental methodology
The development of the Inferior-Olive design was per-

formed using the Xilinx Vivado High Level Synthesis Tool
(HLS v2013.2). The tool gives the ability to describe hard-
ware IPs using a subset of ANSI C and then automatically
handles production of the IP control logic, hardware schedul-
ing of the operations and translation of the described design
in SystemC, VHDL or Verilog code. Vivado HLS also sup-
ports algorithm validation using the C code, as well as inte-
gration with RTL simulators for validation of the produced
HDL code. The tool actually provides the RTL simulation
with the correct input vector according to C test-benches.
This allows for explicit RTL hardware validation with test-
benches simulating the complete CPU/IP system operation.

The ION-network design was translated to VHDL code
using HLS and validated using QuestaSim 10.1 in RTL.
Our testbench highlighted the basic behavior of the ION-
model. All neurons are initialized with identical states, and
left without any outside stimuli, remain synchronized with
their axon voltage values oscillating. After 20,000 simulation
steps, evoked current signals are issued to all neurons for 500
simulation steps. The ION neurons respond to these stimuli
by producing a complex spike as seen in Figure 9(a) before
returning back to their oscillating steady state. The test-
bench simulates 6 seconds of real brain time, taking 120,000
simulation steps to complete.

6.2 Experimental Results
The accelerator achieves real-time execution for a 96-neuron

network with 100% (full) interconnection ratio at an oper-
ating frequency of 100 MHz2 using a Virtex 7 XC7VX485T
FPGA. In Table 2 we can see a performance comparison of
the C code and the hardware accelerator against the original
Matlab implementation; both the C-code and Matlab model

2The operating frequency is limited by the Xilinx IP blocks
used in the design.

Figure 6: Accelerator step execution time for differ-
ent network sizes.

Figure 7: Accelerator performance comparison to
double-FP C implementation.

Figure 8: Initialization delay for different network
sizes.

run on a Xeon 2.66GHz machine with 20GB RAM. The
double-FP C implementation is about ×58 faster that Mat-
lab, while the use of single-FP arithmetic gives a speedup
of almost ×61. The FPGA ION-network kernel achieves an
impressive ×731 speedup compared to the Matlab version
and ×12.5 compared to the C implementation.

The on-chip memory (BRAM) resources available allow
for maximally simulating a 14,440-cell network (non-real-
time). Figure 6 plots the execution time of our designs for
different network sizes. It can be observed that the execu-
tion time scales with the network size slightly worse than lin-
early due to the gap-junction computations which increase
exponentially with the network size for an all-to-all inter-
connected network. However, this is still significantly better
than execution-time trends in software. This point is better
illustrated in Figure 7 which plots the FPGA-based speedup
compared to the double-FP C implementation. As the net-
work size increases above 96 cells, our FPGA-based simula-
tion becomes slower than real-time, however it achieves an
increasingly better speedup compared to the C implementa-
tion. This shows that the increasing gap-junction computa-
tions scale more gracefully in our parallel FPGA-based solu-
tion than in software. For a network of 96 cells, the speedup
is about ×12.5 compared to the C code implementation and
goes up to ×45 for a network size of 1,056 neurons.

Finally, the initialization delay also increases for higher
network sizes, but in a linear fashion (Figure 8). It reaches
a little over 100 µsec for a 1,056-neuron simulation. It should
be noted that this time becomes proportionally smaller and
even negligible for longer simulation times. Naturally, it
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Area Component Utilization % of Available

LUTs 251485 83%
BRAMs 804 78%
FF 162217 27%
DSPs 1600 57%

Table 3: Area utilization for the Virtex 707 evalua-
tion board.
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(a) Double−FP precision trace (baseline)
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(b) Single−FP precision trace (with optimizations 1,2 and 3)
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(c) Precision error (DFP − SFP trace)

Error signal

Figure 9: Graphical comparison of numerical-
precision error. Externally evoked input current
(Iapp) in green, axonal voltage in blue and error
signal in red (Va). (a) Reference trace in double-
FP precision. (b) The same trace generated with
single-FP precision and all three code optimizations.
(c) The error signal (i.e. difference) between the two
traces. Observe the amplitude units of the error.

also represents the time penalty incurred for re-initializing
the cell-states at runtime.

Place-&-Route area results are retrieved using Vivado IDE
2013.2 (Table 3). Our accelerator has been designed to uti-
lize the maximum of the FPGA resources; in practice, it uses
83% of available LUT logic, 78% of BRAMs, 27% of Flip-
Flops and 57% of the available DSPs on the FPGA chip.

6.3 Error Estimation
As previously mentioned, the original ION-network model

performed all computations with double-FP precision. The
main reason was that its modelers (as so many peers in the
neuromodeling field) have arbitrarily opted for double-FP
precision since this is the highest intrinsically supported pre-
cision in many modern programming languages (here: Mat-

lab). However, early in our design effort, we realized that
double-FP precision would tax the FPGA with such high
performance and area costs that no significant acceleration
of the application could be achieved. We, therefore, resorted
to switching to single-FP precision calculations for the hard-
ware version of the ION-network model.

To make such a decision, we had to first make sure that
single-FP precision would be sufficient for the application
at hand. Due to the fact that correct, “reference” brain-
simulation traces do not exist (in fact, this is one of the goals
of model simulators like the one we are porting in this work),
only empirical metrics of correctness can be given by neuro-
scientists at the moment. That is, over a practically infinite
amount of simulation time – for instance 1 day of real-time
brain simulation (amounting to approx. 1.73 billion simula-
tion steps) – the double-FP and single-FP simulation traces
should not exhibit any biophysically different results.

Multiple tests have been run. As a simple illustration, in
Figure 9 both the dynamic (complex spike) and steady-state
(subthreshold oscillations) behavior of a single ION cell be-
tween 700 and 2000 msec of a simulation trace have been
captured. Figures 9(a) and (b) illustrate runs with double-
FP and single-FP precision, respectively. In the single-FP
case are also included the 3 code optimizations discussed in
Section 5.3 which contribute an additional precision error.
In Figure 9(c), the error signal (i.e. difference of the two
signals) is plotted over the same simulation period. Analy-
sis of the error reveals that there is no phase error. A very
low amplitude error is observed which ranges from 0.0%, at
cell resting state (when most internal cell variables change
rapidly), to about 2.1%, at cell firing state. Such a low error
signal does not affect the simulator functionality, especially
since the model itself cannot guarantee such high accuracy
to the real biological system. In conclusion, computations
in single-FP precision along with the 3 performed optimiza-
tions are considered to not compromise the ION-network
simulation correctness and are permanently adopted. It is,
of course, conceivable that a more constrained numerical
range could also be used (i.e. fixed-point precision), but ex-
tensive precision analysis of the mathematical model would
be required to identify such an (integer) range with certainty.

6.4 Comparison to Related Work
We discuss next the efficiency of our design and related

SNN FPGA-based approaches and attempt to analyze and
compare them. A direct comparison is not possible as dif-
ferent works consider different neuron-models with radically
different characteristics, which potentially change completely
the requirements of each design. Moreover, despite its com-
plexity, each model type has its own merits for neuroscience
and potential usefulness in applications. Depending on ap-
plication constraints or the subject of simulation experi-
ments different models can be of use.

Table 4 summarizes related FPGA-based brain-modeling
works. Designs using the Quadratic IaF model such as the
work in [18, 17] can implement spike latencies, activity-
dependent thresholds and bistability properties of resting
and tonic3 spiking. This model requires only 7 FP opera-
tions per 1ms for each neuron making it useful for the ex-
ploration of large neuron integrator networks. The Izhike-
vich neuron is a more advanced model, which emulates all

3Neuron fires continuously while receiving stimuli.
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Design [18, 17] [4][5] [15] [20] [2] ION Design
Model Quadratic IaF Izhikevich Izhikevich HH simplified HH Extended HH
Time Step (ms) 1 1 1 - 0.1 0.05
Real-Time

1000 64000 64000 4 400 96
Network Size
Arithmetic Fixed Fixed Fixed Floating Floating Floating
Precision Point Point Point Point Point Point
Operations

>7 >13 >13 >1200 <1200 22200
per Neuron in 1ms
Neuron Model
OPs * Net. Size >7* >832* >832* >4.8 <480 2131.2
(MFLOPS)
Interconnectivity 1% 1.5% 1.5%
Density (10 per neuron) (1000 per neuron) (1000 per neuron) 100% 100% 100%
Speed-up x162 (C code) x12.5 (C Coce)
vs. CPU - - 4-FPGA System x12 (C Code) - x731.23 (Matlab)
FPGA Virtex 5 Virtex 6 SX475T Stratix IV Spartan 3 Virtex 7
Chip XC5VL330T Maxeler Machine 230 XC3SD1800a Virtex 4 XC7VX485T
Device Capacity 207360 297600 91200×4 ALMs 33280 303600
(LUTs/ALMs) 6-input LUTs 6-input LUTs 2 ALM≈4 6-in LUT 4-input LUTs - 6-input LUTs
Performance density

34* 2796* 1140* 576 - 7019
(FLOPS/LUT**)
* Fixed-point operations ** 6-input LUTs

Table 4: Overview of FPGA SNN Implementations on achievable real-time network sizes. CPU Speed-up for
[15] is compared to a Xeon 2.80GHz/48GB RAM, for [20] compared to a Pentium 4 3GHz/3GB RAM and
for the ION design to a Xeon 2.66GHz/20GB RAM.

known input/output behavior in a spiking neuron. Izhike-
vich models are useful for researching the dynamics of large
neural networks. Their simplicity also allows for the im-
plementation of very large network sizes in FPGA devices,
as described in [5] and [15], achieving sizes already signifi-
cant to actual brain subsystems (tens of thousands of neu-
rons). A little more costly than the IaF, each Izhikevich
neuron model requires 13 operations per 1ms. On the other
hand, biophysically-meaningful models such as the HH mod-
els used in [20, 2], are one to two orders of magnitude more
costly in terms of operations, which is one of the main
reasons why real-time network sizes achievable in such de-
signs are much smaller. Another interesting observation is
that HH models have a much shorter simulation timestep
(tens of µseconds) compared to Quadratic IaF and Izhike-
vich models (1 msec), which increases their complexity and
their accuracy. The ION-model used in the present work
has a simulation step of 50 µsec, ×2-×20 shorter than other
models, making it have the tightest real-time constraint among
the related works reported.

Especially for the ION-cell model considered in this paper,
the complexity is even greater than the other HH models.
The design accurately models 3 compartments and the gap
junctions that account for more than 22,000 FP operations
per 1 msec, about ×19 more than the second most complex
related model. Moreover, the use of simpler models to in-
crease efficiency is not an option when modeling the Inferior
Olive. Izhikevich and IaF models only have two basic out-
put responses for their neuron: resting and firing states. The
biological behavior of the Inferior Olive requires greater reso-
lution, since neurons are constantly oscillating even in their
resting state and have the property to synchronize. Such
behavior could not be simulated with such simpler models.

A strategy that improved performance in some of the re-
lated works, however not applicable in the ION-model, is the
event driven execution, e.g., in [5] and [15]. Due to the fact
that the response of the Inferior Olive neurons oscillates, for
the network to retain the ability to synchronize, the neuron

needs to compute compartment states and transmit its data
through the network connections in every simulation step;
consequently event driven simulation is not appropriate.

Another important performance advantage that the de-
signs of simpler models have is the use of fixed-point arith-
metic. In such models, precision errors can be insignificant
for correct behavior. That is not self-evident in HH mod-
els such as the one dealt with here, as they are much more
sensitive to both amplitude and phase precision errors. For
this reason our design needs to deal with the complexity and
cost of FP operations.

Although the above approaches are radically different, in
Table 4 we attempt to quantify their complexity and eval-
uate their efficiency. We take into account the amount of
computations per neuron in 1 msec and the network size to
estimate the performance of each work in FP operations per
second (FLOPS) and properly marking those that use fixed-
point. It must be noted that estimations for the computing
capabilities of each design are based on data presented in [13]
and cannot account for the computations due to the extra
custom-made characteristics in the network models of each
design, as we do not have this information available. We as-
sume that the majority of the computations come from the
simulation of the main neuron model. Our design achieves
2,131.2 MFLOPS, when matching the real-time constraints,
while [2] achieves 480 MFLOPS; in both cases computations
are mostly due to the complexity of the models. Then, [5]
and [15] support 832 million fixed-point operations per sec-
ond mostly due to the size of the simulated networks. It
is worth noting that the highest connectivity (in absolute
numbers) is provided by [5] and [15], connecting 1,000 neu-
rons all-to-all, however, the amount of data exchanged is
expected to be significantly lower (and less frequent) com-
pared to [2] and compared to our design, which connect 400
and 96 neurons, respectively. Taking into account the area
resources used in each work, we define a metric for per-
formance density and measure operations per second per
unit area (LUT). Our design has the highest performance
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density, with second best being at least ×2.5 lower (with-
out taking into account the difference between fixed- and
floating-point) [5]; the higher number of DSP-slices in our
FPGA device (2,800 vs. 2,015) is however in our advantage.

Finally, interesting conclusions can be derived when com-
paring the speedup of each approach over software imple-
mentations. Compared to a CPU, [2] achieves a ×12 speed-
up, while the Bluehive device reaches an impressive ×162
using, however, four FPGA devices. Our design achieves a
×731.23 speedup compared to the original Matlab code and
×12.5 compared to the double-FP C code. This speedup
reaches almost ×45 for higher network sizes.

7. CONCLUSIONS
We presented an efficient FPGA design for a biophysically-

meaningful model of the Inferior Olive, an important part
of the olivocerebellar subsystem in the brain responsible for
motor coordination and learning. Through a detailed anal-
ysis of the application and optimization of the original al-
gorithm, our ION-model design achieves real-time perfor-
mance as well as sufficient speedup for use in neuroscience
experiments. Our FPGA accelerator managed to simulate
a network of 96 ION-neurons in real-time being more than
×700 faster than the original Matlab model and ×12.5 faster
than the C implementation. The speedup can reach ×45 for
a 1,056-cell network, showing substantially better scalabil-
ity with increasing network sizes compared to software. Al-
though our accelerator implements an ION-network which is
×19 more computationally intensive and has ×2-×20 tighter
real-time constraints compared to related models, it achieves
at least ×2.5 better performance density supporting 2.13
GFLOPS with a single FPGA device. The empirical precision-
error analysis revealed that using our optimizations and single-
FP arithmetic creates a very slim amplitude error and no
phase errors, preserving the correct biological behavior while
benefiting in performance. Our design, implemented in a
Virtex 7 XC7VX485T FPGA, can maximally support a 14,400-
cell network with online parameter configurability for neuron
state and network size.
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[3] D. Brüderle. PyNN and the FACETS Hardware.
www.neuralensemble.org/media/slides/CodeJam2\

_Bruederle\_FacetsHardware.pdf, [Online; accessed
18-December-2013] 2008.

[4] K. Cheung, S. R. Schultz, and P. H. W. Leong. A
Parallel Spiking Neural Network Simulator. In Int.
Conf. on FPT, pages 47–254, Dec. 2009.

[5] K. Cheung, S. R. Schultz, and W. Luk. A large-scale
spiking neural network accelerator for FPGA systems.
In Int. conf. on Artificial Neural Networks and
Machine Learning, ICANN’12, pages 113–120, 2012.

[6] C.I. De Zeeuw, F.E. Hoebeek , L.W.J. Bosman, M.
Schonewille, L. Witter, and S.K. Koekkoek.
Spatiotemporal firing patterns in the cerebellum. Nat
Rev Neurosci, 12(6):327–344, jun 2011.

[7] H. de Garis, M. Korkin, and G. Fehr. The CAM-Brain
Machine CBM: An FPGA Based Tool for Evolving a
75 Million Neuron Artificial Brain to Control a
Lifesized Kitten Robot. Auton. Robots, 10(3):235–249,
May 2001.

[8] H. Du Nguyen. GPU-based simulation of brain neuron
models. Master’s thesis, Delft Technical University,
Aug. 2013.

[9] G. Ermentrout and N. Kopell. Parabolic Bursting in
an Excitable System Coupled With a Slow Oscillation.
SIAM J on Applied Mathematics, 46:233–253, 1986.

[10] G. B. Ermentrout. Type I membranes, phase resetting
curves, and synchrony. Neural Computation,
83:979–1001, 1996.

[11] A. L. Hodgkin and A. F. Huxley. Quantitative
description of membrane current and application to
conduction and excitation in nerve. Journal
Physiology, 117:500–544, 1954.

[12] E. Izhikevich. Simple Model of Spiking Neurons. IEEE
Trans. on Neural Networks, 14(6), 2003.

[13] E. Izhikevich. Which Model to Use for Cortical Spiking
Neurons? IEEE Trans on Neural Net., 15(5), 2004.

[14] W. Maass. Noisy Spiking Neurons with Temporal
Coding have more Computational Power than
Sigmoidal Neurons. In Neural Information Processing
Systems, pages 211–217, 1996.

[15] S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos,
and A. Mujumdar. Bluehive — A Field-Programable
Custom Computing Machine for Extreme-Scale
Real-Time Neural Network Simulation. In IEEE Int.
Symp. on FCCM, pages 133–140, 2012.

[16] National Academy of Engineering (nae.edu). Grand
Challenges for Engineering, 2010.

[17] H. Shayani, P. Bentley, and A. M. Tyrrell. A Cellular
Structure for Online Routing of Digital Spiking
Neuron Axons and Dendrites on FPGAs. In ICES ’08,
Int. Conf. on Evolvable Systems: From Biology to
Hardware, pages 273–284, 2008.

[18] H. Shayani, P. Bentley, and A. M. Tyrrell. Hardware
Implementation of a Bio-plausible Neuron Model for
Evolution and Growth of Spiking Neural Networks on
FPGA. In NASA/ESA Conf. on Adaptive Hardware
and Systems, pages 236–243, June 2008.

[19] G. Wulfram and W. Werner. Spiking Neuron Models.
Cambridge University Press, 2002.

[20] Y. Zhang, J. P. McGeehan, E. M. Regan, S. Kelly, and
J. L. Nunez-Yanez. Biophysically Accurate Floating
Point Neuroprocessors for Reconfigurable Logic. IEEE
Trans on Computers, 62(3):599–608, march 2013.

98




