
IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR 1

Optimizing Extended Hodgkin-Huxley Neuron
Model Simulations for a Xeon/Xeon Phi Node

George Chatzikonstantis, Dimitrios Rodopoulos, Christos Strydis, Chris I. De Zeeuw, and Dimitrios Soudris

Abstract—Brain modeling has been receiving significant attention over the years, both for its neuroscientific potential and for its
challenges in the context of high-performance computing. The development of physiologically plausible neuron models comes at the
cost of increased complexity. In this work, we have selected a highly computationally demanding model of the Inferior-Olivary Nucleus
(InfOli) based on the Hodgkin-Huxley (HH) neuron model. This brain region, functionally coupled with the cerebellum, is of vital
importance for motor skills and time-sensitive cognitive functions. The computing fabric of choice is an Intel Xeon/Xeon Phi system,
which is a typical node of modern computing infrastructure. The target application is parallelized with various combinations of MPI and
OpenMP and performance is measured on the target platform. The different implementations are compared and the best one is
chosen. Further optimization of this implementation is presented in detail. Its behaviour is then examined when scaling up to neuron
populations representative of realistic, human Inferior-Olivary neuronal networks. The evaluation’s results highlight the importance of
examining a network’s size and density before choosing the best platform for its simulation. All the parallelization and vectorization
options presented in the current paper are available on a public repository for further examination.

Index Terms—MPI, Neuron Modeling, OpenMP, Xeon Phi, Performance, Vectorization

F

1 INTRODUCTION

N EUROSCIENTISTS have been gradually revealing de-
tails of neuron operation. Software has been devel-

oped for single-neuron, and eventually, brain-wide simula-
tions. Porting of such simulators on various platforms is an
active field of research [1], [2]. Aiming at larger, more accu-
rate neuron networks, neuroscientists require more memory
and extended execution times to produce relevant results.

Similarly to other compute-intensive fields [3], multi-
and many-core platforms can speed up neuron simulators,
such as through the NEuronal Simulation Tool (NEST) [4].
The current paper features a simulator for biophysically
plausible inferior-olivary neuron models. It is an exten-
sion of a previously published paper discussing the ini-
tial experiences from porting the application on an Intel
Xeon/Xeon Phi node [5]. The modeling accuracy is at the
cell conductance level (Hodgkin and Huxley models [6]),
allowing us to expose fine details of the neuron mechanisms.
This workload is an excellent candidate for parallelization
on (co)processor fabrics, such as the Intel Xeon/Xeon Phi
system [7], due to the large inherent parallelism of the
models. Additionally, it constitutes a realistic worst-case
scenario in terms of model complexity, hence a benchmark
for neuron modeling workloads.

The Xeon Phi [8] (hereon referenced as simply “Phi”
for clarity) is an Intel accelerator platform arranged in a
host-and-coprocessor fashion. The machine examined in this

• G. Chatzikonstantis and D. Soudris are with the Laboratory of Micro-
processors and Digital Systems (MicroLab), Department of Electrical and
Computer Engineering (ECE), National Technical University of Athens
(NTUA), Greece. E-mail: {georgec, dsoudris}@microlab.ntua.gr

• D. Rodopoulos is with imec, Belgium.
E-mail: dimitrios.rodopoulos@imec.be

• C. Strydis and C. I. De Zeeuw are with Erasmus Medical Center Rotter-
dam (EMC), Netherlands. E-mail: {c.strydis, c.dezeeuw}@erasmusmc.nl

Manuscript received Month Day, Year.

paper belongs to the Knight’s Corner (KNC) generation and
features 61 cores, each with four instruction streams. It sup-
ports traditional parallel-programming paradigms, such as
MPI [9] and OpenMP [10], in contrast to Graphics Process-
ing Units (GPU) requiring platform-specific programming
paradigms [11]. After the Xeon host boots Linux on the
Phi, the latter may be used independently, for native work-
load execution. The Phi accelerator features vectorization
processing units (VPU) [8], which can parallelize multiple
floating-point (FP) operations.

In the current paper, we explore porting of the HH
neuron simulator, using combinations of MPI and OpenMP,
on the target platforms. By varying the problem size (i.e.
number of simulated neurons), the optimal implementation
and target fabric (Xeon host or Phi) may also change. The
contributions of the current paper are especially geared
towards identifying the correct implementation based on
problem size: (i) Three different, non-platform-specific im-
plementations are presented for the InfOli simulator (MPI,
OpenMP, and hybrid); (ii) Their performance and scaling
capabilities for various workload parameters is evaluated
natively on the Xeon host and the Phi, allowing optimal
combinations of implementation and fabric to be identified;
(iii) The optimal design points are scaled up to form realistic
neuron population sizes encountered in the human inferior
olive [12] and (iv) The most promising implementation un-
dergoes extensively analyzed code transformations in order
to boost the underlying fabric’s performance.

The paper is organized as follows: Section 2 presents
simulators and many-core platforms that are typically used
in the computational-neuroscience domain. Section 3 elab-
orates on the deployment of the InfOli simulator on the
Xeon/Xeon Phi system. Section 4 presents performance
measurements of the various implementations and the
trends observed. Section 5 presents the concept of vectoriza-



2 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

tion in detail, as well as related techniques used to increase
performance. Section 6 outlines the conclusions of this work.
The simulator, along with all the coding options presented
herein, is available under GPL [13].

2 PRIOR ART AND MOTIVATION

The neuroscientific community focuses on various aspects of
neuronal activity, featuring models at different abstractions.
A reference tool in this domain is NEURON [14], which
provides the user with many accurate model simulators.
NEST [4] is a lighter tool that mostly aims at simulating
large networks of much simpler neuron models. A differ-
ent approach is explored by the European research project
FACETS [15], whereby instead of using software-based nu-
merical methods, analog neuromorphic hardware directly
simulates complex neuron models.

In the current Section we firstly present different neu-
ron models to offer some insight on typical neuroscientific
processing workloads, as well as the model used in this
work. Then, we discuss prior efforts of simulating neuronal
networks on various fabrics. Finally, we elaborate on our
fabric of choice, the Xeon/Xeon Phi system.

2.1 Background on Neuron Models

Spiking Neural Networks (SNNs) [16] focus on input-
current patterns and spike-transfer delays, tracking pro-
cesses common in biological neural networks. These models
are used by neuroscientists to study complex brain mecha-
nisms and test hypotheses that in vitro and in vivo experi-
ments cannot verify. They are broadly categorized either as
Integrate and Fire (I&F) or as conductance-based models.

I&F models are the simplest SNN models, primarily
focusing on receiving a spike input and determining the
neuron’s response based on a voltage threshold. They are
widely used due to their simplicity and extensibility, re-
sulting in a large range of I&F variants in the literature
(e.g. leaky I&F [17], [18] and exponential I&F [19] models).
Conductance-based models lie on the opposite side of the
spectrum, using complicated differential equations. They
offer valuable insight into the electrochemical properties
of the neuron and the ability to study its ion channels.
However, the high modeling accuracy they offer comes
at the cost of significant computational complexity, often
deeming them too expensive to use in daily experiments.
The Hodgkin and Huxley model [6] can be considered as
the most prominent example of this class. A mathematical
reduction of this model has been proposed by Richard
FitzHugh and Nagumo et al. [20].

The Izhikevich model [21] bridges the gap between simpler
I&F models and complex conductance-based ones. This
model is computationally simple (like I&F) and, although
it does not expose the electrochemical details of biological
neurons, Izhikevich neurons display biologically plausible
input-output interactions. They feature computational com-
plexity significantly smaller than that of HH models. To
put their differences in perspective, an Izhikevich neuron
requires 13 floating-point operations to simulate 1 ms of its
operation, whereas an HH neuron will need thousands of
floating-point operations for the same amount of activity

Fig. 1. Flowchart of the InfOli simulator [23].

[22]. A lighter version of the HH-based model discussed in
the current paper, featuring significantly less complicated
inter-neuron communication mechanisms, has been ported
on NVIDIA GPUs and scaled up to one million neurons [2].
Finally, a thorough classification of available neuron models
and simulators has been made by Brette et al. [16].

2.2 Target Model and Simulator

The model used in the current work belongs to the complex
class of conductance-based (HH) models. Its computational
requirements make it a valid candidate for many-core plat-
form porting, especially when the simulated population of
neurons needs to be scaled. Contrary to related work, where
a custom implementation of this simulator was ported on a
research-grade chip [23], we discuss implementations using
programming paradigms that are not platform-specific.

The InfOli model is used to describe neurons of the
inferior-olive region, which is a small part of the brain
linked to learning of movements and motor function [30].
This particular model is an HH extension, originally de-
signed by De Gruijl et al. [31]. The model splits the function
of each neuron into three compartments: the soma, the axon
and the dendrite. The soma serves as the neuron’s main
computational body. The axon connects to other parts of the
brain (through climbing fibers) and can be thought of as the
neuron’s output port. Dendrite structures called dendritic
spikes form electrotonic connections with other neurons in
the network. These electrical synapses are known as gap
junctions and are responsible for inter-neuron communica-
tion [32]. This model feature represents a potential paral-
lelization bottleneck, since gap junctions require heavy data
communication between processing threads, particularly in
densely interconnected networks.

The InfOli simulator of Figure 1, performs the following
tasks: First, the state of the neurons is initialized with values
assigned to ion-channel concentrations and compartmental
membrane voltage potentials. Then, the next state of each
neuron is calculated, given a connectivity map, a set of input
currents and ordinary differential equations (ODEs) for the
mechanisms in each neuron compartment, solved via the
Euler forward method [33]. The latter is an iterative process,
repeated in steps with a duration of δ milliseconds, until
the simulated brain time requested by the user is reached.
This is thus, a time-driven simulator the state and output of
which are calculated precisely at every simulation step.



CHATZIKONSTANTIS et al.: OPTIMIZING EXTENDED HODGKIN-HUXLEY NEURON MODEL SIMULATIONS FOR A XEON/XEON PHI NODE 3

TABLE 1
Relevant prior art.

Reference Platform Neuron Model Network Size Network Density Reported Results

[24] Supercomputer K I&F 1.8 bil. 6, 000 connections/neuron 270 hrs/second of Activity

[25] GPU Izhikevich 300, 000 300 connections/neuron 15× slower than Real Time

[26] Xilinx FPGA Izhikevich 1, 000 1, 000 connections/neuron Real-time Simulation

[27] GPU Izhikevich 40, 000 1, 000 connections/neuron Real-time Simulation

[28] Supercomputer Dawn BG/P Izhikevich 900 mil. 10, 000 connections/neuron 5 minutes/second of Activity

[1] GPU and Izhikevich 5.8 mil. Izh., Full Connectivity Between Speedups of 10× for Izh.
Intel Xeon and HH 50 HH Two Layers and 120× for HH

[29] GPU HH-based 400, 000 8 connections/neuron 1.33 hrs/second of Activity

[2] GPU HH-based 1 mil. 8 connections/neuron 6.66 minutes/second of Activity

Our work Intel Xeon and Phi HH-based 1 mil. 100 connections/neuron 24 minutes/second of Activity

2.3 Neuron Simulation on Many-Cores
As mentioned above, accelerators and many-core fabrics are
an attractive option for neuroscientific workloads. Fidjeland
et al. [27] have successfully deployed densely connected
neuronal networks on GPUs, reaching network sizes of
40, 000 Izhikevich neurons. Bhuiyan et al. [1] use various
platforms to scale up to millions of Izhikevich neurons,
coupled with 50 HH neurons in a 2-level neuronal structure.
Furthermore, their work aims at character recognition rather
than providing biophysiological value. Choi et al. [26] have
developed 1,000 silicon spiking neurons on a Xilinx Field
Programmable Gate Array (FPGA), based on the Izhikevich
model. Ananthanarayanan et al. have documented one of
the largest simulation efforts to date, porting a network of 1
billion Izhikevich neurons on a cutting-edge supercomputer
[28]. Partners of the Human Brain Project (HBP) have also
used GPUs and FPGAs for HH modeling of the human
cerebellum [29]. Their implementation scales up to 400,000
neurons, simulates brain activity for 3 s and imposes a static
nearest-neighbour neuron interconnectivity.

In addition to porting standard SNNs on accelerators,
complete toolkits, aimed at the development of neuronal
models, have been ported to such computing platforms.
An FPGA toolbox for simulating SNNs in hardware has
been developed by Qingxiang et al. [34]. CARLsim [25],
on the other hand, is a GPU-oriented library for SNN
simulation and model-testing. Finally, NEST allows MPI,
multithreading and hybrid usage thereof as parallelization
methods, thus providing another interesting alternative for
high-performance neuron modeling that has been tested on
high-end supercomputers [24].

The information presented in this Subsection is summa-
rized in Table 1, following an order of simplest to most
elaborate neuronal model. The Table does not include a full
review of all related work in the literature; an extensive
survey is outside the scope of this paper.

2.4 Target Platform
Phi belongs to the Many Integrated Core (MIC) architecture;
the processor model used in this work features 61 cores with
multithreading capabilities and VPUs, allowing Single In-
struction Multiple Data (SIMD) execution of FP operations.

The Intel Phi card is treated as an accelerator and re-
quires a Xeon host to boot a Linux image on it; however it

can also be thought of as a standalone processor, executing
any series of instructions independently from the main
processor. A developer can use the Phi to code via tradi-
tional tools of parallel programming, such as the OpenMP
library [10]. This fact differentiates it from other acceleration
platforms such as GPUs by allowing the programmer to
avoid using specialized libraries, such as CUDA [11] or
OpenCL [35], allowing for rapid code development. This
benefit is partially tempered when attempting to exploit the
platform’s SIMD instructions, a task which is not trivial for
complicated codebases. To that end, there exist specialized
tools that aid with the use of the VPUs and enhance vector-
ization [36]. We will initially evaluate implementations that
are generic enough to be seamlessly portable on both the
processor and the co-processor. The most promising imple-
mentation will be enhanced with fine-grain vectorization in
order to take full advantage of the underlying platform.

3 IMPLEMENTATION DETAILS

The simplest method a programmer can employ to par-
allelize a neuron modeling (or any other) workload is to
assign different parts of the workload to different cores.
Each core computes independent parts of the workload
and communicates with other cores in order to complete
operations that require input from them. Our InfOli model
is data-partitionable in the above way, with communication
imposed by gap junctions. These constitute the biological
mechanism through which a neuron receives input from
connected neurons based on the voltage differential of the
respective dendritic membrane potentials. Thus, in each
step of the simulation, collection of the dendritic membrane
potential from all neurons that connect to any of the core’s
neurons, is required. The connection is determined by a
user-defined connectivity map. This task requires inter-core
communication that can be achieved by using several dif-
ferent programming paradigms, such as MPI, OpenMP or a
hybrid combination of the two. These three alternatives are
explored in the following Subsections.

3.1 MPI Implementation
MPI is a library for distributed-memory systems where
coordination between cores is achieved by message-passing
through fast-memory buffers. While both the Xeon host and



4 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

(a) MPI (b) OpenMP (c) Hybrid

Fig. 2. Flowchart of the implementations discussed in the current paper [5].

the Phi co-processor share memory between their cores, the
MPI implementation is still useful for evaluating the shared-
memory performance and serves as a baseline towards the
hybrid method. It is also a well-supported and continuously
updated tool which can aid in multi-node-system imple-
mentations [37], [38]. In such multi-node systems, message
passing is achieved over TCP or Infiniband. In a single-node
system, shared memory is used instead.

The primary unit of execution of this implementation is
the MPI rank, with a one-to-one correspondence between
ranks and cores. Each rank handles a subset of the neuronal
network as well as its data-exchanging needs; in order to
properly model gap junctions, neurons exchange states be-
fore simulating each time-step. One approach to this task is
to perform neuron-to-neuron communication based on user-
defined connectivity and the respective MPI commands.
Assuming a neuron population N , the worst-case number
of MPI_Isend and MPI_Irecv pairs executed is (N −1)2.1

Furthermore, we explore an alternative data-grouping
technique, whereby data is exchanged in buffers. Each MPI
rank consolidates all dendritic membrane potentials that
are to be sent to another core into a single buffer. Packing
is the procedure of determining which values need to be
sent over and then, bundling them together in one buffer,
designated for the recipient core. Unpacking is the procedure
of analyzing data in the received buffer so as to distribute
the values to the neurons that need them based on the
the neuron connectivity map. Assuming k MPI ranks, the
worst-case number of MPI_Isend and MPI_Irecv pairs is
(k − 1)2, whereas each bundle contains at the most N/k
more data than the naive neuron-to-neuron case.

Both packing and unpacking take place in each iteration

1. Note that the MPI functions for transmitting and receiving data
used in this work are asynchronous. The non-blocking nature of
these functions facilitates irregular core communication. This trait
was taken advantage of, since the InfOli simulator aims at support-
ing any network interconnection pattern, causing unpredictable core-
communication schemes.

of the InfOli model. During the first simulation step, each
core “marks” neurons that are necessary for a core-data-
exchange; packing marked data into the buffer can then be
performed efficiently. Unpacking, however, requires each
neuron to extract marked data from the buffer, which is
done in a sequential manner since no OpenMP threads
are employed in this implementation. Thus, while packing
is completed in each step with little computational effort,
unpacking imposes a non-negligible overhead. However,
this bundling technique is more efficient than issuing MPI
calls for every neuron that needs to communicate.

Figure 2a describes the MPI implementation. The sim-
ulator starts by initializing the neuron states and processes
the connectivity map. The neuron population is divided and
assigned to MPI ranks. The execution then proceeds to the
main loop which lasts for a fixed, user-defined number of
simulation steps. In each step, the neurons receive input
stimulus current. The cores then pack their data in k − 1
buffers. These buffers are exchanged via asynchronous MPI
communication and unpacked. Each core checks for the
completion of all relevant MPI communication functions
to ensure that neurons have access to updated data re-
garding their connections to other neurons. Only then can
the neuronal network be updated to its new state while
avoiding stale data-propagation. Each core performs a set
of calculations for each neuron it handles and stores the
neuron’s new state values locally. The simulation step then
ends and the cycle begins anew.

3.2 OpenMP Implementation
OpenMP uses #pragma omp directives to designate paral-
lel regions of code to the compiler. We mainly use OpenMP’s
#parallel_for, which flags the iterations of a for loop as
eligible for parallelization. Since data-exchange is transpar-
ent in OpenMP and does not involve manual coordination
of message-passing, there is no need to pack and unpack
data. This makes the OpenMP implementation much sim-
pler in terms of coding effort.



CHATZIKONSTANTIS et al.: OPTIMIZING EXTENDED HODGKIN-HUXLEY NEURON MODEL SIMULATIONS FOR A XEON/XEON PHI NODE 5

The primary unit of execution is the OpenMP thread.
The main loop of the InfOli model is divided between
threads with #parallel_for. Each thread handles a dif-
ferent part of the network, much like the MPI ranks do
in the message-passing implementation. Since memory is
shared between the primary units of execution, each unit
can freely access another unit’s data, thus allowing the
dendritic-voltage exchange to be a completely local and in-
dependent process. Pure computation (i.e. solution of the re-
spective ODE) is also carried out locally, allowing the whole
loop to be parallelized efficiently. On the other hand, since
data is shared between different cores, preserving cache
coherence introduces MESI-protocol-related overheads. This
may cause the implementation to slow down considerably;
this behaviour becomes particularly prominent when the
network solver operates on a small-sized network and is
saturated with too many OpenMP threads. Determining the
optimal number of threads to alleviate the burden of such
overheads is important for the OpenMP implementation.

3.3 Hybrid Implementation
An OpenMP implementation, as proposed in the previous
Subsection, may appear to be the most intuitive paralleliza-
tion strategy for the InfOli model. Given both implemen-
tations’ strengths and weaknesses, it may be interesting to
explore a hybrid implementation, combining both MPI and
OpenMP. This course of action is even more compelling
for the Phi, since it combines the platform’s multithreading
capabilities and the option to distribute the workload across
multiple Phi cards. The hybrid implementation developed
stems primarily from our MPI implementation (Subsection
3.1). While the primary unit of execution is an MPI rank,
each MPI rank further spawns OpenMP threads to create a
hybrid porting. These threads are used to boost packing and
unpacking, as well as the main computation process.

In Figure 2c, we organize the cores of a platform into
groups. Within each group, all cores communicate over
shared memory. They spawn OpenMP threads to perform
and accelerate computations. Each group is perceived as a
single MPI rank in the MPI environment. Within the group,
one “master” core handles MPI communication and sends
necessary data from the entire group to another shared-
memory group on every simulation step. The packing and
unpacking of this data is performed by the OpenMP threads
spawned by the entire group. Only the actual MPI calls are
performed in single-threaded fashion by one core per group.

This implementation treats any single-node system (with
processor and co-processor) as a potential multi-node one.
It aims at dividing its computing resources (hardware cores
and instruction streams) in standalone islands of shared
memory that communicate with each other via message
passing. This method is logically extensible to multi-node
platforms, assuming that computing resources of different
nodes belong to different shared-memory islands. Thus, it
serves as a bridge from single- to multi-node systems. The
granularity of the hybrid implementation shall be expressed
as the ratio of MPI ranks to OpenMP threads spawned
by each rank. Similar to the pure OpenMP case, this ratio
needs to be fine-tuned in order to minimize the overheads
of OpenMP threads (stemming from maintaining cache co-
herence) and of implementing message-passing.

4 IMPLEMENTATION EVALUATION

4.1 Experimental Setup

All experiments performed involve a simulation of 5s of
brain time. This time interval is sufficient for our measure-
ments since the InfOli simulator represents a deterministic
workload of highly predictable behaviour - which is typical
of time-driven simulators. The simulator has been set up
to operate with a constant step δ= 50 µs due to modeling-
accuracy requirements. Thus, the entire simulation ends
after 105 simulation steps. Neuronal networks simulated
in this work are represented as a three-dimensional (3D)
mesh. Furthermore, network topology is important, since
it dictates the coordinates of each neuron based on which
a peudo-distance between any two neurons is calculated.
For these calculations, the model does not take into ac-
count the geometrical properties of individual neurons. The
simulator treats each neuron as a point in the 3D-space.
The functionality of each gap junction is unaffected by the
neurons’ spacial orientation and size, thus this level of detail
is assumed to be sufficient for the model.

As far as network connectivity is concerned, we em-
ployed two different connectivity patterns. Firstly, we made
an assumption reasonable for the inferior-olivary nucleus
that the closer neurons are to one another, the more likely
they are to form connections (i.e. gap junctions) and ex-
change information. Thus, we employed a probabilistic
connectivity pattern where the probability of connection
between two neurons depends on their cartesian distance
and is calculated using the formula of a normal distribution,
with a standard deviation of 5 neurons. This deviation
results in an average of 50 − 200 connections formed per
neuron, varying with network size, which is an adequate
connectivity density for the purposes of testing the im-
plementations’ scaling capabilities. Alternatively, we also
explored set amounts of connections per neuron, which
allows a more direct control over the network’s density.
Experiments carried out using this connectivity pattern can
provide insight into how each implementation handles in-
creased network traffic and data-storage needs.

Connections are created at a pre-processing stage (based
on the aforementioned patterns) and are stored in the con-
nectivity map of the simulation, represented as an adjacency
matrix. To decrease input file sizes, sparse-matrix formats
are used for large neuronal networks (≥ 10, 000 neurons).

The entirety of our experiments has been carried out in
the Blue Wonder cluster, at the Hartree Center of the Science
& Technology Facilities Council (STFC) in the United King-
dom. Access to Xeon/Xeon Phi systems (one single node)
is enabled over ssh. Each node contains an Intel Xeon E5-
2697v2 processor (dual-socket arrangement) with 64 GB of
RAM, operating at 2.7 GHz and one Intel Phi 5110P ac-
celerator. All measurements presented in the current paper
have been taken from execution of the target application
on a single node of the cluster. The Intel MPI compiler
(Intel MPI-5.0.3) is used for the MPI and hybrid imple-
mentations. The Intel C compiler (Intel compiler 15.0.2) is
used for the OpenMP implementation, as well as the related
Intel OpenMP runtime library (following the OpenMP 4.0
standard). Performance measurements of small-scale runs
(maximum network size of 10,000 neurons) have been per-



6 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

Number of Ranks (p.u.)
100 101 102

E
xe

cu
tio

n
 T

im
e

 p
e

r 
S

im
u

la
tio

n
 S

te
p

 (
µ

s)

102

103

104

105

1000 Cells @ Xeon
2000 Cells @ Xeon
5000 Cells @ Xeon
10000 Cells @ Xeon
1000 Cells @ Phi
2000 Cells @ Phi
5000 Cells @ Phi
10000 Cells @ Phi

(a) MPI
Problem Size (neurons)

103 104

A
ve

ra
g

e
 S

yn
a

p
se

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p

e
r_

si
m

S
te

p
 (

µ
s)

}

0.5

1

1.5

2

2.5

3

3.5

(b) MPI Network Density Exploration - Xeon
Problem Size (neurons)

103 104

A
ve

ra
g

e
 S

yn
a

p
se

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p

e
r_

si
m

S
te

p
 (

µ
s)

}

0.5

1

1.5

2

2.5

3

3.5

(c) MPI Network Density Exploration - Phi

Fig. 3. Depiction of MPI measurements on the host and the Phi.

formed using the Intel VTune performance analyzer (Intel
VTune Amplifier XE 2016). Since VTune collects hardware
events during execution, its overhead (both in execution
time and disk space) is prohibitive for larger simulations; the
Linux default time command (GNU time 1.7) has been used
in large-scale simulations instead. We present performance
measurements in execution time per InfOli simulation step,
so that we mitigate transient effects at simulation start/end,
as well as depict the simulator’s performance in a manner
more easily comparable to related work in the literature.

4.2 Experimental Results

The three implementations presented in Subsections 3.1, 3.2,
and 3.3 have been tested natively both on the Xeon host and
the Phi co-processor, creating a total of six different evalu-
ations. We explore the granularity of each implementation
and evaluate a variety of problem sizes (neuron populations,
network density). Findings are reported next.

4.2.1 MPI Implementation

In Figure 3, we present results for the pure MPI implemen-
tation. Figure 3a explores the granularity of the implemen-
tation by varying the number of MPI ranks. We used up
to 20 ranks for the Xeon processor and up to 50 ranks for
the Phi co-processor, since it offers more hardware cores
than the Xeon processor. The figures reveal that the Phi is
outperformed by the dual-Xeon processor host. One of the
primary reasons for this is the inability of a strictly MPI-
based implementation to take advantage of the entirety of
the Phi’s computing resources. The Phi accelerator cards
feature cores that base much of their processing power on
their multithreading capabilities, capable of supporting up
to 4 instruction streams in parallel. The MPI implementation
however, only uses a single thread per rank.

From the figure, we also observe a difference in perfor-
mance gains as we employ more MPI ranks. There is an
irregularity in efficiency when simulating relatively small
networks of 1,000 to 2,000 neurons on the Phi device. On the
Xeon host, there is reduced performance gain for a network
of only 1,000 neurons as we reach 20 MPI ranks. This
behavior suggests that such problem sizes pose relatively
small workloads that do not fully exploit the computational

resources of each platform, especially the Phi. The aforemen-
tioned trend disappears for problem sizes increase to at least
5, 000 neurons. When solving for such networks, we get a
near-linear performance gain when we increase the number
of MPI ranks employed. This behavior is interesting since,
as explained in Subsection 3.1, an increase in MPI ranks
increases communication overheads in data exchange as
well as in data packing and unpacking. Linear performance
gains, on the Phi device in particular, indicate the following:
given that the MIC architecture focuses on high memory
bandwidth, it can handle the scaling message exchanging
demands imposed by as many as 50 communicating MPI
ranks, as long as the workload per rank is large enough.

This statement is further suppored by data in Figures
3b and 3c, where the MPI implementation is tested with
the maximum amount of MPI ranks available on both
platforms, for networks representing varying degrees of
communication activity. The Xeon host consistently remains
the better choice out of the two computational fabrics for
the MPI implementation. However, a variation in the per-
formance differences is observed with varying degrees of
network density and size. For sparse and small networks
(1, 000 neurons with 10 − 20 synapses each), the Xeon host
outperforms the Phi by a margin of 10-20×. As networks
grow denser and larger, the performance difference becomes
less pronounced, down to a range of 3-4× for networks of
10, 000 neurons, each with 1, 000 synapses.

4.2.2 OpenMP Implementation

In Figure 4, we illustrate the performance assessment of the
OpenMP implementation. For network sizes between 1,000
and 10,000 neurons the shared-memory implementation
works better on the Phi device compared to the purely MPI
equivalent. Particularly for smaller networks, OpenMP runs
for a fraction of the execution times reported for MPI. By
design, Phi supports many more threads (up to 240 when
fully utilizing 60 cores) than the Xeon processor. Thus, in
the OpenMP paradigm, we can exploit the accelerator’s
resources much more aggressively. This leads to a perfor-
mance improvement when compared to MPI in the case
of the Phi. Besides, the Xeon host can be expected to have
similar performance between MPI and OpenMP, given that
the number of threads that can be supported is smaller.



CHATZIKONSTANTIS et al.: OPTIMIZING EXTENDED HODGKIN-HUXLEY NEURON MODEL SIMULATIONS FOR A XEON/XEON PHI NODE 7

Number of OMP Threads (p.u.)
100 101 102 103

E
xe

cu
tio

n
 T

im
e

 p
e

r 
S

im
u

la
tio

n
 S

te
p

 (
µ

s)

102

103

104

105 1000 Cells @ Xeon
2000 Cells @ Xeon
5000 Cells @ Xeon
10000 Cells @ Xeon
1000 Cells @ Phi
2000 Cells @ Phi
5000 Cells @ Phi
10000 Cells @ Phi

(a) OpenMP
Problem Size (neurons)

103 104

A
ve

ra
g

e
 S

yn
a

p
se

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p

e
r_

si
m

S
te

p
 (

µ
s)

}

0.5

1

1.5

2

2.5

3

3.5

(b) OpenMP Network Density Exploration - Xeon
Problem Size (neurons)

103 104

A
ve

ra
g

e
 S

yn
a

p
se

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p

e
r_

si
m

S
te

p
 (

µ
s)

}

0.5

1

1.5

2

2.5

3

3.5

(c) OpenMP Network Density Exploration - Phi

Fig. 4. Depiction of OpenMP measurements on the host and the Phi.

Number of OMP Threads (p.u.)

2 4 6 8 10 12 14 16 18 20

%
 o

f 
T

h
re

a
d
-T

im
e
 S

p
e
n
t 
E

x
e
c
u
ti
n
g
 o

n
 A

v
e
ra

g
e
 p

e
r 

T
h
re

a
d

86

88

90

92

94

96

98

100

1000 Cells @ Xeon

2000 Cells @ Xeon

5000 Cells @ Xeon

10000 Cells @ Xeon

Fig. 5. OpenMP thread activity on the Xeon host.

According to Figure 4a, the Phi accelerator’s perfor-
mance increases in a near-linear fashion with the amount of
OpenMP threads invoked. This is an expected observation if
we consider the design of the Phi as a platform for massive
multithreading. In contrast, the Xeon host does not exhibit
consistent scaling as more OpenMP threads are added for
small populations of simulated neurons. More specifically,
after using half of its resources, employing more OpenMP
threads does not speed the processor further up.

We can generally form the following hypothesis for non-
linear scaling of small neuron populations on the Xeon
host: The benefit of the OpenMP implementation is that,
for sufficiently large problem sizes, increasing the available
thread count reduces the computational burden assigned
per thread. In other words, more threads means less sim-
ulated neurons per thread. On the other hand, the cost of
an OpenMP implementation is related to the overhead of
shared-memory operations. More OpenMP threads on the
same platform results in thread concurrency taking a larger
hit due, for instance, to race conditions on shared resources.
Conclusively, and as the Xeon host’s performance in 4a in-
dicates, small problem sizes can be efficiently tackled with a
small number of threads. On the contrary, when the problem
size is sufficiently large, initializing more OpenMP threads

is beneficial, the coherency penalties notwithstanding.
The Xeon host’s OpenMP performance issues for small

workloads are further supported by data in Figure 5. By
using Intel VTune to analyze the application performance
on the host, we collected data concerning the OpenMP
threads CPU time, which is defined as: “the amount of time
a thread spends executing on a logical processor and, for
multiple threads, the CPU time of the threads is summed”
[39]. By dividing the collective CPU time with the number
of threads employed by an application, we thus calculate
the time spent executing on the processor, averaged across
all threads. We then compare this time against the real
elapsed time of the workload to calculate the percentage
of time spent executing on the processor, averaged across
all threads. It is then, demonstrated that, for 1, 000 neurons,
using 20 threads drastically decreases the average time of
thread activity. When not executing on the processor, the
threads are idle, as would be the case of waiting for thread
synchronization. This idleness appears to be prevalent when
spawning multiple OpenMP threads for small workloads.

In addition, in Figure 4b, the increase in execution time
per simulation step of the OpenMP implementation is er-
ratic when examining smaller and sparser networks. This
observation builds further upon the statement that the Xeon
host’s performance is relatively inefficient when using the
maximum number of OpenMP threads for small workloads.
On the contrary, for larger and denser networks, the Xeon
host performs in a more predictable manner. Furthermore,
the Phi accelerator, in Figure 4c, features a more linear
increase in execution time as the workload increases.

4.2.3 Hybrid Implementation

In Figure 6, we present the performance assessment of
the hybrid implementation. We examine a range of ratios
between the number of MPI ranks and the number of
OpenMP threads each rank spawns. For this implementa-
tion, multiplying the number of MPI ranks employed by the
corresponding number of OpenMP threads a rank utilizes
yields the total amount of OpenMP threads spawned across
the platform. In all measurements presented for this imple-
mentation, this number will always be equal to 20 for the
Xeon host and 200 for the Phi accelerator. In this manner, the
implementation takes advantage of each platform’s assets in



8 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

Ranks to OMP Threads Ratio (p.u.)
1:20 2:10 5:4 10:2 20:1 1:200 2:100 5:40 10:20 20:10 50:4

E
xe

cu
tio

n
 T

im
e

 p
e

r 
S

im
u

la
tio

n
 S

te
p

 (
µ

s)

102

103

104

105 1000 Cells @ Xeon
2000 Cells @ Xeon
5000 Cells @ Xeon
10000 Cells @ Xeon
1000 Cells @ Phi
2000 Cells @ Phi
5000 Cells @ Phi
10000 Cells @ Phi

(a) Hybrid
Problem Size (neurons)

103 104

A
ve

ra
g

e
 S

yn
a

p
se

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p

e
r_

si
m

S
te

p
 (

µ
s)

}

0.5

1

1.5

2

2.5

3

3.5

(b) Hybrid Network Density Exploration - Xeon
Problem Size (neurons)

103 104

A
ve

ra
g

e
 S

yn
a

p
se

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p

e
r_

si
m

S
te

p
 (

µ
s)

}

0.5

1

1.5

2

2.5

3

3.5

(c) Hybrid Network Density Exploration - Phi

Fig. 6. Depiction of Hybrid measurements on the host and the Phi.

a consistent manner throughout the ratio-sweep. In general,
measurements shown in 6a indicate that a “middle-of-the-
road” ranks-to-threads ratio yields the best performance.

In the case of the Xeon host, spawning 5 MPI ranks, with
each rank using 4 OpenMP threads, offers the best results.
Using more MPI ranks does not offer any additional benefit.
A similar behavior is observed on the Phi co-processor. A
configuration of 20 MPI ranks, each spawning 10 OpenMP
threads, offers the best performance. Additionally, simula-
tions of reduced neuron populations using the hybrid imple-
mentation on the Phi exhibit performance unpredictability
beyond the 5:40 rank-to-thread ratio. In general, we observe
that both platforms perform better with a moderate balance
between MPI ranks and OpenMP threads. Using these ra-
tios, extensive measurements for networks of varying size
and complexity are depicted in Figures 6b and 6c.

Moreover, the hybrid implementation appears to be
performance-bound by the two previous ones (strictly MPI
or OpenMP): On the one hand, when too many ranks are
employed, the implementation behaves more or less like the
purely MPI codebase. Apart from the message-passing over-
head, a slight performance drop is attributed to OpenMP
thread creation and maintenance. When few MPI ranks are
deployed and shared-memory threads are emphasized, the
application behaves more or less like the OpenMP imple-
mentation. Apparently, a balanced configuration distributes
the burden of message exchange between a reasonable
number of core-groups, while keeping the workload of
each group big enough in order to near-maximally utilize
computational resources for OpenMP thread maintenance.
Thus, for the hybrid implementation as a whole, balanced
configurations appear to minimize the combined message-
passing and shared-memory overheads.

4.2.4 Comparing Implementations

Having swept the parameters of the discussed implementa-
tions on the Xeon host and Phi co-processor, we attempt
to scale the best of them to neuroscientifically-relevant
problem sizes, namely beyond half a million neurons [12].
From each of the discussed implementations, we isolate the
configurations behaving optimally in Figures 3a, 4a, and 6a
and increase the simulated neuron populations. The results
of this final set of experiments are illustrated in Figure 7.

Number of Simulated Cells (p.u.)
103 104 105 106

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s)

102

103

104

105

106

Hybrid Method 5:4 @ Xeon
Pure MPI 20 Ranks @ Xeon
Pure OMP 20 Threads @ Xeon
Hybrid Method 20:10 @ Phi
Pure MPI 50 Ranks @ Phi
Pure OMP 200 Threads @ Phi

Fig. 7. Comparing the best implementations on host and accelerator,
before manual AVX-oriented optimizations.

As expected from Figures 3a, 4a, and 6a, the Phi acceler-
ator cannot compete with the host for native execution of
these implementations. Clearly, the only way for potentially
gaining more performance from the MIC accelerator is by
performing source code vectorization [36] after identifying
the implementation of choice for the Phi.

After examining each implementation independently,
we observe that the Phi behaves significantly better un-
der a shared-memory programming paradigm. For smaller
networks, it achieves execution times that are comparable
to those of the Xeon host, even without manual code vec-
torization. However, as network size increases, OpenMP
implementations display a steeper performance curve. This
causes MPI-based methods to catch up with the shared-
memory implementation when solving for networks of
more than 20,000 neurons. At this point, the message-
passing-based porting methods, that aim at dividing the net-
work in groups, become attractive. Furthermore, MPI-based
implementations are the only viable option for carrying out
large simulations on a multi-node system with Phi cards.

Comparing the two message-passing methods on the
accelerator, the hybrid implementation outperforms the
pure MPI method by drawing on more of the platform’s



CHATZIKONSTANTIS et al.: OPTIMIZING EXTENDED HODGKIN-HUXLEY NEURON MODEL SIMULATIONS FOR A XEON/XEON PHI NODE 9

resources. We observe a relatively small performance gain
created by spawning OpenMP threads in each MPI rank,
that slowly grows as network size increases. The hybrid
approach was expected to improve on the MPI implementa-
tion by a wider margin. The overhead of spawning OpenMP
threads on each simulation step appears be a limiting factor
to its efficiency.

On the Xeon host, all implementations perform compa-
rably to each other. In a similar fashion to the Phi platform,
OpenMP is the implementation of choice for smaller net-
works. When the problem size scales to very large networks
of more than 50, 000 neurons, we can observe a trend where
pure-MPI and OpenMP implementations outperform their
hybrid utilization. On the Xeon host, hybrid coding is not
an improvement over the strictly MPI method since the
platform does not support multithreading.

In conclusion, all three implementations can use the
entirety of the Xeon computing capacity and the larger
workloads demand a pure approach, rather than a hy-
bridized one. There is no significant difference between
MPI and OpenMP when aiming at simulations of more
than 105 neurons. We discern a slight inclination for MPI
to outperform OpenMP when the network reaches the 1
million neurons barrier.

5 VECTORIZATION STUDY

In order to exploit the Phi device to its fullest potential,
extensive micro-optimizations, as well as code transforma-
tions are needed. Section 4 showed clearly that the Phi’s
performance is inadequate without spending development
time in optimizing the codebase. The initial study of the
un-optimized code presented evidence that the OpenMP
programming paradigm provides the most efficient porting
solution. Thus, the efforts of drawing the platform’s re-
sources were focused on the shared-memory version of the
simulator. This decision was further reinforced by the fact
that the MPI message-exchanging functions are incapable
of using the platform’s Vector Processing Units (VPUs) for
acceleration.

5.1 Basics of Vectorization

VPUs are units that enable fine-grain parallelism and are
present on Intel’s Xeon architecture - both on Xeon proces-
sors and Phi cards. At their core, VPUs are registers that
allow the execution of a specific instruction set, named Ad-
vanced Vector Extensions (AVX) [40], which is an extension
to the well-known x86 instruction set. AVX originated in
an older extension to the x86 instruction set designed to
support Single Instruction Multiple Data (SIMD), named
Streaming SIMD Extensions (SSE) [41]. AVX features mul-
tiple versions and varying width in the vectorization regis-
ters, with current Intel Phi models (Knight’s Corner - KNC)
supporting AVX2 and future models (i.e. Knight’s Landing
- KNL), supporting AVX512.

The Knight’s Corner Phi that is under evaluation in this
work utilizes 512-bit wide VPUs. They allow up to 16 single-
precision or 8 double-precision operations to be carried out
simultaneously by each of the 240 hardware threads of
the device. There already are multiple case studies taking

advantage of VPUs and AVX instructions to significantly
boost the performance of evaluated applications from a
variety of scientific fields [42], [43].

In practice, the application developer should picture the
VPUs as an effort to unroll and parallelize the iterations of
a loop, whereas they would otherwise be executed sequen-
tially. This level of parallelism requires that the loop’s itera-
tions can be executed independently from each other and in
any sequence. This is not always possible; for example, loop
iterations may present Read-After-Write (RAW) and Write-
After-Read (WAR) dependencies when reading and storing
data in the same memory addresses.

The developer is assisted in vectorizing his code by the
compiler’s optimizations, which circumvent some of these
limitations. In other cases, regions of code are designated
as not vectorizable, due to dependencies that cannot be
avoided by the compiler in an automatic fashion. In this
work, we used the Intel C Compiler (ICC) to compile our
application for the Phi architecture and enabled the com-
piler’s built-in vectorization assistance by compiling with
the -vec-report flag for Linux Operating Systems. Fur-
thermore, there are various documents detailing guidelines
for efficient vectorization particularly on the Phi [44], [45].

5.2 Optimization Steps

In our study, a number of steps was taken in order to vastly
improve the efficiency of AVX instruction implementation.
Each step introduces some form of modification of the
codebase. We classify these modifications under two general
categories. There are steps that should be taken into consid-
eration by any developer that aims at porting an application
on an AVX-compliant computing fabric, regardless of the
application’s nature. We also performed transformations
that fit the particular algorithm used for this simulator
and can be of use in other codebases that follow similar
patterns. For ease of reference, we term the former as generic
modifications and the latter as specialized transformations.

5.2.1 User-assisted Dependency Disambiguation (DD)
In order to ensure correct program functionality, the com-
piler assumes a conservative approach when determining
the existence of a dependency. If the limits of data structures
cannot be calculated with certainty, which is often the case
for dynamically-allocated data, then the compiler is forced
to assume that segments of memory appointed to different
structures may overlap. The case of accessing the same
memory address under two different names, such as by
using two pointers with the same value, is called aliasing and
it forces conservative compilation without SIMD-operations
in order to protect an application’s coherence.

In Figure 8, the compiler may be unable to determine
whether pointers a and b refer to entirely separate memory
regions, particularly if there is no pre-compiling information
regarding the region sizes. However, when a developer
is certain that assumed dependencies and aliasing-caused
precautions can be ignored, the compiler may be instructed
to override its assumptions and produce vectorized loops.

In the case of the icc compiler, this can be achieved
using the #pragma ivdep directive, as demonstrated in
algorithm 8. This is a generic modification; in this particular



10 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

1: int * restrict a, * restrict b;
2: ...
3: #pragma ivdep
4: for i = 0 to upper bound do
5: b[i] = a[i] * constant k;
6: end for

Fig. 8. An example of preventing aliasing.

1: int *a = mm malloc(upper bound*sizeof(int), 64);
2: int *b = mm malloc(upper bound*sizeof(int), 64);
3: ...
4: #pragma ivdep
5: for i = 0 to upper bound do
6: b[i] = a[i] * constant k;
7: end for

Fig. 9. Using _mm_malloc.

example, the developer is aware that proper coding ensures
there is at least 4∗upper bound bytes worth of memory space
separating the values of pointers a and b; thus, there are
no memory accesses in this loop for pointer a that could
interfere with pointer b’s and vice versa. Declaring pointers
using the restrict keyword is also recommended, acting
as a way to communicate to the compiler that the developer
guarantees exclusive memory accessing.

5.2.2 Inline Expansion (IE) and Memory Alignment (MM)
By vectorizing a loop, memory accesses that would other-
wise take place in different iterations of the loop happen in
parallel. Hence, it is imperative that when cache lines are
fetched from the main memory, all simultaneous memory
accesses are satisfied. To this end, data structures need to
be aligned with cache lines; this essentially means that each
data allocation for a structure begins in an address that is
also the beginning of a cache line. Vectorized accesses to
the memory space of an aligned data structure coincide
with a single cache-line-fetching. Memory alignment is a
crucial step that avoids latency in the execution of SIMD-
instructions due to multiple cache-line-retrievals for a single
instruction. Since this applies to any application regardless
of its nature, this is a generic modification.

In order to ensure aligned memory allocations, the de-
veloper is encouraged to avoid using standard C malloc
function calls and opt instead for Intel’s _mm_malloc. This
icc-compatible function ensures that data allocation will
begin at an address that is divisible by the size of the
platform’s cache line (as supplied by the developer). For the
Phi (KNC) architecture, data structures need to be allocated
at an address that is divisible by 64, since each cache line
has a size of 64 bytes, whereas the Xeon host has 32-byte
alignment. An example of the function is given in Figure 9
for the Phi co-processor.

In addition, using function calls in a vectorized loop
is discouraged. When vectorizing a loop, an identical in-
struction pattern must be maintained across all iterations
so that their execution can be parallelized. Instructions that
alter the flow of a program, such as conditional instructions
and function calling, can pose obstacles for efficient vector-
ization. As such, function inlining is a practice extensively

1: for i = 0 to NW Size do
2: #pragma ivdep
3: for j = 0 to Synapse Count do
4: incoming current[i][j] = calculate synapse(i, j);
5: end for
6: calculate new state(incoming current[i], i);
7: end for

Fig. 10. Nested Loop example.

researched [46] and automatically performed by the com-
piler in many cases; however, in our work, manual inline
expansion proved beneficial in regions of code where the
compiler did not intervene.

5.2.3 Vectorization-Driven Loop Splitting (LS)
As mentioned before, vectorizing a loop involves using
SIMD operations in order to execute iterations of a loop in
parallel. In the case of nested loops, the compiler always
chooses the innermost level of the loop to vectorize. This
decision is supported by the fact that vectorized loops
include as few alterations in the execution of each iteration
as possible. Should the compiler vectorize the outer level of
a nested loop, the produced vectorized code would include
the conditional branching instructions of the inner loop,
which would hamper the performance of the program.

In addition, the described behaviour also forces the com-
piler to ignore any other instructions contained in the nested
loop but outside the innermost layer. In many cases, a pro-
gram’s complexity is unaffected by any operations outside
the inner loop; however this is not true for all algorithms. In
Figure 10, an example from the InfOli simulator presented
in this paper is given. The algorithm operates in two phases:
for every neuron in the network, the simulator calculates the
effect each synapse has on the neuron, represented in the
inner loop, and then evaluates the changes in the neuron’s
state. While the former phase claims a large portion of the
total workload, the latter phase is also important due to the
number of exponential functions employed in each of the
neuron-channel calculations.

In order to produce vectorized code for both phases of
the algorithm, we split the simulation loop in two dedi-
cated loops. The first is a two-layer loop for the synapse-
evaluation phase whereas the second is a single-layer loop
estimating the changes in the neuron’s state. The two loops
are then vectorized separately; this also allows for exclusive
modifications in each loop’s code. This specialized transforma-
tion is presented in Figure 11. The example contains function
calls for the sake of clarity and compactness; however, as
stated in Subsection 5.2.2, the functions’ code has been
inlined in the main loop.

5.2.4 Data Restructuring (DR)
Subsection 5.2.2 discussed the importance of matching

the execution of vectorized regions of code with cache-line-
aligned memory accesses in order to maximize the effec-
tiveness of VPU usage. However, allocating data structures
in aligned memory addresses does not guarantee optimal
memory-access patterns. It is equally important to ensure
that data is accessed in a serial, unit-stride manner across



CHATZIKONSTANTIS et al.: OPTIMIZING EXTENDED HODGKIN-HUXLEY NEURON MODEL SIMULATIONS FOR A XEON/XEON PHI NODE 11

1: for i = 0 to NW Size do
2: #pragma ivdep
3: for j = 0 to Synapse Count do
4: incoming current[i][j] = calculate differential(i, j);
5: end for
6: end for
7: #pragma ivdep
8: for i = 0 to NW Size do
9: calculate new state(incoming current[i], i);

10: end for

Fig. 11. Split Loop example.

all iterations of the vectorized loop. Unit-stride memory
references ensure memory is accessed in a sequential and
continuous manner, which is important in the case of vec-
torized code, since memory accesses happen in parallel.

Since unit-stride memory accesses are paramount to
obtaining good performance, data structures need to be
designed accordingly. In Figure 12, a data structure is used
that contains all relevant information for the main object
under examination in this work, a neuron. While the struc-
ture presents the data in a meaningful and compact way, its
usage in a vectorized algorihm proves to be problematic.

In the main loop, each of the neuron’s channels is
accessed and processed in a sequential manner. For the
unvectorized code, data should be allocated in the memory
in such a way that each neuron stores the entirety of its
data, such as channel states and membrane voltage levels,
as compactly as possible. In this case, the data structure
presented in Figure 12 is beneficial to use. In order to
generate a network of such neurons, the programmer would
allocate an array of the struct Neuron.

However, in the case of vectorized code, the order of
data accesses changes. Since there are parallel iterations
of the loop, data from different neurons will be accessed
simultaneously; the processor computes each of the model’s
parameters for the entire network in parallel. This order of
memory accesses points towards storing each parameter’s
data from the entirety of the network as compactly as
possible. In this case, a struct, such as Neuron, is unsuitable.
In order for memory accesses to happen in unit stride, it
is advisable to represent each of the model’s parameters as
an array that stores data for the entire network, as shown
in Figure 13. These arrays can then be packed, if desired,
in a different struct that represents the neuron network,
rather than each neuron individually. This technique is an
Array-of-Structs (AoS) to Struct-of-Arrays (SoA) specialized
transformation and it, along with other data-structure trans-
formations, has been extensively used in the literature, in
multiple fields of HPC and SIMD computing [47], [48].

5.3 Evaluation
The simulator’s codebase features a baseline version, which
largely ignores the AVX instruction set due to the compiler’s
conservative strategy concerning assumed dependencies.
The techniques mentioned in Subsection 5.2 are successively
applied to this version, revealing a steady increase in the
efficiency with which the simulator uses the platform’s
resources. The application’s performance is then measured

1: struct Neuron {
2: float Na;
3: float K;
4: ...
5: };
6: ...
7: #pragma ivdep
8: for i = 0 to NW Size do
9: calculate channel Na(Neuron[i].Na);

10: calculate channel K(Neuron[i].K);
11: ...
12: end for

Fig. 12. Data represented as a struct.

1: float *Na = mm malloc(NW Size*sizeof(float), 64);
2: float *K = mm malloc(NW Size*sizeof(float), 64);
3: ...
4: #pragma ivdep
5: for i = 0 to NW Size do
6: calculate channel Na(Na[i]);
7: calculate channel K(K[i]);
8: ...
9: end for

Fig. 13. Data represented as multiple arrays.

and the contribution of each modification is evaluated. In
Figure 14, networks that are both sparsely and densely
connected are tested, on both the host and the co-processor.
Multiple measurements of each test are conducted and the
mean value, along with an error margin corresponding to
a confidence interval of 95%, is plotted. Different behaviour
patterns are observed based on network complexity.

In the case of sparse networks, performance gains are
highly dependent on the vectorization technique used, as
well as the size of the network. Small and sparse networks
present both platforms with a small workload. Particularly
for the Xeon host, using the AVX instruction set does not
guarantee a boost in performance. It is observed that tech-
niques mentioned in Subsection 5.2, such as memory align-
ment and loop splitting, are mandatory in order to attain
an improvement in performance; prior to applying them,
small-workload-processing is not accelerated via vectoriza-
tion. In this case, the Xeon host performs better without
taking advantage of the VPUs.

This behaviour can be explained by reflecting on the
trade-offs made when using the AVX instruction set. Com-
pared to the scalar instruction set, the average vector in-
struction requires an increased amount of clock cycles until
completion. The reward of using vector instructions lies
in processing multiple data simultaneously. As Figure 14
demonstrates, this gain diminishes when there is a relatively
small amount of neurons to be simulated per OpenMP
thread. In such cases, the amount of data processed by
each thread is insufficiently large to fill the VPUs. Suitable
memory-alignment of aforementioned data also plays a crit-
ical role in performance. As a result, scalar instructions may
outperform an improperly vectorized codebase, particularly
for the Xeon host which features better scalar performance



12 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

1000 2000 5000 10000

Number of Neurons (p.u.)

102

103

104

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s)

Baseline DD DD+IE/MM DD+IE/MM+LS Final

(a) Sparse network on Xeon host (10 synapses per neuron)

1000 2000 5000 10000

Number of Neurons (p.u.)

102

103

104

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s)

Baseline DD DD+IE/MM DD+IE/MM+LS Final

(b) Sparse network on Phi (10 synapses per neuron)

1000 2000 5000 10000

Number of Neurons (p.u.)

102

103

104

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s)

Baseline DD DD+IE/MM DD+IE/MM+LS Final

(c) Dense network on Xeon host (500 synapses per neuron)

1000 2000 5000 10000

Number of Neurons (p.u.)

102

103

104

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s)

Baseline DD DD+IE/MM DD+IE/MM+LS Final

(d) Dense network on Phi (500 synapses per neuron)

Fig. 14. Effects of vectorization on networks of varying size and complexity.

than the Phi.

Dense networks, on the other hand, provide a larger
workload and thus, a better opportunity to take advantage
of the platform’s resources. Cases of not-fully-optimized
code outperform the unvectorized codebase, even for the
Xeon host. It can be assumed that, in cases where the
workload is sufficiently heavy (due to the large amount
of calculations required by each neuron’s synapses), vector
instructions are largely “safe” to use. In Figure 14d, the
increase of neuron populations alters execution time only
slightly for properly-vectorized code. This is an indication
that, with proper manual vectorization, the accelerator can
utilize its assets efficiently and can handle increases in
workload well, until the entirety of its computational re-
source pool is expended. Thus, vectorization can potentially
yield significant boosts in performance, with larger benefits
observed for the Phi accelerator due to a larger amount of
available resources.

Figure 15 evaluates the properly-vectorized code when
solving for scaled-up networks, on both platforms. In Figure
15a, there is a small and stable performance gap between the
Phi device and the Xeon host. The accelerator outperforms
the host in a predictable manner. On the contrary, denser
networks in Figures 15b and 15c depict a more complicated
behaviour. There is a range of neuron populations where
the Phi accelerator outperforms the host. Furthermore, as
network size increases, approaching populations of realistic,
human inferior olivary nucleus’ numbers, the performance

gap between the two computing fabrics diminishes. For
larger populations, the Xeon host may outperform the Phi.

These observations can be justified by the fact that
network density is ultimately closely correlated to how
parallelizable the code is. From a programmer’s point of
view, the synapse count per neuron signifies the degree by
which the simulator will differ from an embarassingly paral-
lel application. The neuron’s dendritic compartment forces
OpenMP threads to sync due to shared-memory accesses
and MPI ranks to exchange data via messages. In addition,
it imposes irregularities in memory access patterns due to
the fact that the network connectivity matrix is unknown
before the simulation begins and thus, data required by each
neuron cannot be stored in a sequential, unit-stride manner.
This holds especially true for simulations that would require
the connectivity matrix to be constantly changing during a
run, in order to study the constantly changing connections
forming in the human brain. Non-unit stride accesses have
an adverse effect on the efficiency of vectorization, as pre-
sented in Subsection 5.2.4.

The results illustrated in Figure 15 can, then, be traced
back to the model’s shifting behaviour based on network
connectivity. Sparse networks can be parallelized and vec-
torized efficiently; the Phi accelerator will outperform the
Xeon host due to an increased amount of available re-
sources, for any non-trivial neuron population. Dense net-
works, on the other hand, cannot be accelerated as effi-
ciently. The Xeon host is the superior platform for small net-



CHATZIKONSTANTIS et al.: OPTIMIZING EXTENDED HODGKIN-HUXLEY NEURON MODEL SIMULATIONS FOR A XEON/XEON PHI NODE 13

103 104 105 106

Number of Neurons (p.u.)

102

103

104

105

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s) Xeon host
Phi accelerator

(a) Networks of 10 Synapses/Neuron

103 104 105 106

Number of Neurons (p.u.)

102

103

104

105

106

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s) Xeon host
Phi accelerator

(b) Networks of 100 Synapses/Neuron

103 104 105 106

Number of Neurons (p.u.)

102

103

104

105

106

E
xe

cu
tio

n 
T

im
e 

pe
r 

S
im

ul
at

io
n 

S
te

p 
(µ

s) Xeon host
Phi accelerator

(c) Networks of 500 Synapses/Neuron

Fig. 15. Scaling up the best and properly vectorized implementation on the host and the accelerator.

works of high connectivity due to its better single-threaded
performance, as well as the fact that small networks present
less opportunities for the Phi accelerator to utilize its avail-
able threads and larger VPUs. As the network size increases,
the accelerator can use more of its assets. A point is reached
where the Phi outperforms the host by meeting workload
demands with aggressive usage of its computational as-
sets. Once the Phi’s computational resources are working
at maximum capacity, a saturation point is reached; in
Figure 15c, the performance gap between the two platform
gradually narrows for populations beyond 10, 000 neurons,
whereas this point is reached at 20, 000 neurons in Figure
15b. From then on, the Xeon host’s superior single-threaded
performance handles the application in a better manner,
allowing it to outperform the accelerator for human inferior-
olive numbers (≥ 100, 000).

6 CONCLUSION

In this work, we have ported a biophysically accurate
simulator of the inferior olivary nucleus on a single-node
Xeon/Xeon Phi system. The selected InfOli simulator serves
as a significant benchmark for parallelization and scaling of
biologically-plausible neuron modeling workloads. We have
presented and evaluated three native implementations on
the target system: an MPI-based, an OpenMP-based and a
combination of both.

MPI is consistenly the worst choice for the Phi ac-
celerator. Its poor performance was expected due to the
implementation’s inability to utilize the platform’s valuable
multithreading capabilities. On the other hand, OpenMP
exhibits the best performance for any problem size. The
hybrid implementation is an improvement over MPI and for
larger networks (≥ 104 simulated neurons), its performance
approximates OpenMP’s results. Since this third porting
method is designed as easily scalable to multi-node systems,
this is a particularly interesting finding when aiming at large
network simulations.

On the Xeon host, we observe small differences across
implementations. OpenMP remains a more suitable choice
for small networks. However, its performance can vary
wildly depending on network size and, when simulating
more than 105 neurons, an MPI implementation is preferred.
The hybrid implementation offers little benefit and a strictly
MPI or OpenMP porting option is advisable here. Before
manual vectorization, the Xeon host offered better perfor-
mance than the Phi co-processor and successfully scaled up

to networks of a million inferior olivary nuclei with normal
distribution of inter-neuron connections.

The shared-memory implementation is manually tuned
for the underlying platforms. A combination of pragma
directives, function inlining and specific memory allocation
functions, specialized for cache line alignment, is initially
used. These techniques are applicable to any codebase and
form the basis of vectorizing any application. Furthermore,
modifications that are specifically designed for the sim-
ulator’s algorithm, are employed. As a result, a sizeable
increase in attainable simulation speed was achieved for
workload sizes that are eligible for vectorization. Thus, we
encourage the usage of these optimizations on codebases
that resemble the algorithm, connectivity patterns and prob-
lem sizes encountered in the InfOli modeling application.

Overall, the techniques presented in this paper were
beneficial for both the accelerator and the host. In particular,
for networks that are large and densely-connected enough
to saturate the Phi’s assets, the difference in performance
between manually vectorized code and un-optimized code
that relies solely on the compiler is an order of magnitude.

After fine-tuning the application, the platforms perform
differently depending on network connectivity density.
Sparse networks are a good candidate for acceleration via
the Phi co-processor’s large pool of computation resources.
Furthermore, dense networks feature a range of populations
between 5, 000 and 50, 000 neurons where the co-processor
can use its computational resources to outperform the host.
On the other hand, the host’s focus on single-threaded and
scalar performance is a better fit for dense networks outside
this range due to their less well-parallelizable nature.

ACKNOWLEDGMENTS

This work is partially supported by European Commission
project H2020–687628–VINEYARD. The STFC Hartree Cen-
tre (UK) is acknowledged for computational resources.

REFERENCES

[1] Bhuiyan, M. et al., “Acceleration of spiking neural networks in
emerging multi-core and gpu architectures,” in IPDPSW, 2010.

[2] Nguyen, H. A. Du et al., “Accelerating complex brain-model
simulations on gpu platforms,” in DATE, 2015, pp. 974–979.

[3] O. Trott and A. J. Olson, “AutoDock Vina: improving the speed
and accuracy of docking with a new scoring function, efficient
optimization, and multithreading,” J. of Comp. Chemistry, 2010.

[4] Plesser, H. E. et al., “Nest: the neural simulation tool,” Enc. of
Comp. Neuroscience, pp. 1849–1852, 2015.



14 IEEE/ACM TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YEAR

[5] G. Chatzikonstantis et al., “First impressions from detailed brain
model simulations on a xeon/xeon-phi node,” in ACM Computing
Frontiers, 2016.

[6] A. L. Hodgkin and A. F. Huxley, “Propagation of electrical signals
along giant nerve fibres,” Proceedings of the Royal Society of London.
Series B, Biological Sciences, vol. 140, no. 899, pp. 177–183, 1952.

[7] Fang, J. et al., “Test-driving intel xeon phi,” in ICPE, 2014.
[8] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-

Performance Programming. Elsevier, 2013.
[9] M. Snir, MPI–the Complete Reference: The MPI core. MIT, 1998.
[10] L. Dagum and R. Enon, “Openmp: an industry standard api for

shared-memory programming,” IEEE CSE, vol. 5, no. 1, pp. 46–55.
[11] “CUDA C Programming Guide,” NVIDIA Corporation, Tech. Rep.

PG-02829-001 v7.5, 2015.
[12] R. D. Monagle and H. Brody, “The effects of age upon the main

nucleus of the inferior olive in the human,” Journal of Comparative
Neurology, vol. 155, no. 1, pp. 61–66, 1974.

[13] https://github.com/GeorgeChatzikonstantis/InfOliFull.
[14] M. L. Hines and N. T. Carnevale, “The NEURON simulation

environment,” Neural computation, vol. 9, no. 6, 1997.
[15] Schemmel, J. et al., “A wafer-scale neuromorphic hardware system

for large-scale neural modeling,” in IEEE ISCAS, May 2010.
[16] Brette, R. et al., “Simulation of networks of spiking neurons: A

review of tools and strategies,” J. of Comp. Neuroscience, 2007.
[17] Y.-H. Liu and X.-J. Wang, “Spike-frequency adaptation of a gen-

eralized leaky integrate-and-fire model neuron,” Journal of Comp.
Neuroscience, vol. 10, no. 1, pp. 25–45, 2001.

[18] Chacron, M. J. et al., “Interspike interval correlations, memory,
adaptation, and refractoriness in a leaky integrate-and-fire model
with threshold fatigue,” Neural Comput., pp. 253–278, 2003.

[19] Brette, R. and Gerstner, W., “Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity,” Journal
of Neurophysiology, vol. 94, no. 5, 2005.

[20] W. E. Sherwood, “Fitzhugh–nagumo model,” in Enc. of Comp.
Neuroscience, D. Jaeger and R. Jung, Eds. Springer, 2014, pp. 1–11.

[21] Izhikevich, E. M. et al., “Simple model of spiking neurons,” IEEE
Transactions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[22] E. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE Trans. on Neural Networks, 2004.

[23] Rodopoulos, D. et al., “Optimal mapping of inferior olive neuron
simulations on the single-chip cloud computer,” in SAMOS, 2014.

[24] Kunkel, S. et al., “Spiking network simulation code for petascale
computers,” Frontiers in Neuroinf., 2014.

[25] Beyeler, M. et al., “Carlsim 3: A user-friendly and highly optimized
library for the creation of neurobiologically detailed spiking neural
networks,” in IJCNN, 2015, pp. 1–8.

[26] Choi, J. et al., “Implementation of hardware model for spiking
neural network,” in ICAI, 2015, p. 700.

[27] Fidjeland, A. K. et al. , “Nemo: a platform for neural modelling of
spiking neurons using gpus,” in IEEE ASAP, 2009, pp. 137–144.

[28] R. Ananthanarayanan et al., “The cat is out of the bag: cortical
simulations with 109 neurons, 1013 synapses,” in Conference on
High Performance Computing Networking, Storage and Analysis, 2009.

[29] G. Florimbi et al., “The human brain project: Parallel technologies
for biologically accurate simulation of granule cells,” Microproces-
sors and Microsystems, 2016.

[30] De Zeeuw, C. I. et al., “Microcircuitry and function of the inferior
olive,” Trends in neurosciences, vol. 21, no. 9, pp. 391–400, 1998.

[31] J. R. De Gruijl et al., “Climbing fiber burst size and olivary sub-
threshold oscillations in a network setting,” 2012.

[32] C. I. De Zeeuw et al., “Spatiotemporal firing patterns in the
cerebellum,” Nature Reviews Neuroscience, vol. 12, no. 6, 2011.

[33] W. H. Press et al., Numerical recipes in C. Cambridge university
press Cambridge, 1996, vol. 2.

[34] Wu, Q. et al., “Development of fpga toolbox for implementation
of spiking neural networks,” in CSNT, 2015, pp. 806–810.

[35] K. O. W. Group et al., “The OpenCL specification,” 2008.
[36] Lubin, M. et al., “Efficient Software Development: 4 What’s New

in Intel R© Parallel Studio XE 2013 Service Pack,” 2013.
[37] http://mpi-forum.org/.
[38] L. Dalcı́n et al., “Mpi for python,” Journal of Parallel and Distributed

Computing, vol. 65, no. 9, pp. 1108–1115, 2005.
[39] https://software.intel.com/en-us/node/471922.
[40] C. Lomont, “Introduction to intel advanced vector extensions,”

Intel White Paper, 2011.
[41] P. PENTIUM III, “Implementing streaming simd,” 2000.

[42] A. Tanikawa et al., “N-body simulation for self-gravitating colli-
sional systems with a new simd instruction set extension to the x86
architecture, advanced vector extensions,” New Astronomy, 2012.

[43] S. J. Pennycook et al., “Exploring simd for molecular dynamics, us-
ing intel R© xeon R© processors and intel R© xeon phi coprocessors,”
in International Symposium on Parallel & Distributed Processing, 2013.

[44] M. Deilmann, “A guide to vectorization with intel c++ compilers,”
Intel Corporation, April, 2012.

[45] M. Barth et al., “Best practice guide intel xeon phi v1.” 2013.
[46] S. P. Jones and S. Marlow, “Secrets of the glasgow haskell compiler

inliner,” Journal of Functional Programming, vol. 12, no. 4-5, 2002.
[47] L. Papadopoulos et al., “Exploration methodology of dynamic data

structures in multimedia and network applications for embedded
platforms,” Journal of Systems Architecture, vol. 54, no. 11, 2008.

[48] T. Hussain et al., “Reconfigurable memory controller with pro-
grammable pattern support,” HiPEAC WRC, vol. 67, p. 95, 2011.

George Chatzikonstantis obtained his Diploma
in Electrical and Computer Engineering from
the National Technical University of Athens in
2013. His research interests focus on high-
performance computing, multi-core/single-chip
multiprocessors and bioinformatics. He is cur-
rently conducting research on neuromodeling
applications in high-performance computing fab-
rics as a Ph.D. student in the National Technical
University of Athens.

Dimitrios Rodopoulos received his Ph.D. De-
gree in Computer Science from the National
Technical University of Athens and completed
his Thesis in imec, Belgium in 2016. His re-
search interests include deca-nanometer de-
vice degradation phenomena and mitigation
techniques against time-zero/-dependent device
variability. Currently, he serves as RnD Engineer
at imec, Belgium.

Christos Strydis obtained his Ph.D. Degree in
Computer Engineering from the Delft Univer-
sity of Technology in 2011. His interests revolve
around the topics of high-performance computa-
tional neuroscience and of next-generation im-
plantable medical devices. Currently, he is an
assistant professor with the Neuroscience de-
partment of the Erasmus Medical Center, the
Netherlands, and is also a chief engineer with
Neurasmus BV, the Netherlands.

Chris I. De Zeeuw received his PhD with a focus
in brain and behavior in 1990 and his MD in 1991
from Erasmus University Rotterdam. He focuses
on the nerve cells in the cerebellum responsible
for learning and the effect of their electrical activ-
ity on movement. He is currently the director of
Neurasmus BV, the Chairman of the Department
of Neuroscience at Erasmus MC Rotterdam and
the Project Director at the Netherlands Institute
for Neuroscience in Amsterdam.

Dimitrios Soudris received his Ph.D. Degree in
Electrical Engineering from the University of Pa-
tras in 1992. His research interests include em-
bedded systems design, reconfigurable architec-
tures, reliability and low power VLSI design. He
is currently working as Associate Professor in
School of Electrical and Computer Engineering,
Dept. Computer Science of National Technical
University of Athens, Greece.


