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Abstract—Recent trends in semiconductor technology have
dictated the constant reduction of device size. One negative effect
stemming from the reduction in size and increased complexity is
the reduced device reliability. This paper is centered around the
matter of hard-error tolerance and graceful system degradation
in the presence of permanent faults. We take advantage of the nat-
ural redundancy of homogeneous multicores following a sparing
strategy to reuse functional pipeline stages of faulty cores. This is
done by incorporating reconfigurable interconnects next to which
the cores of the system are placed, providing the flexibility to
redirect the data flow from the faulty pipeline stages of damaged
cores to spare (still) functional ones. Several micro-architectural
changes are introduced to decouple the processor stages and allow
them to be interchangeable. The proposed approach is a clear
departure from previous ones by offering full flexibility as well
as highly graceful performance degradation at reasonable costs.
More specifically, our coarse-grain fault-tolerant multicore array
provides up to ×4 better availability compared to a conventional
multicore and up to ×2 higher probability to deliver at least one
functioning core in high fault densities. For our benchmarks, our
design (synthesized for STM 65nm SP technology) incurs a total
execution-time overhead for the complete system ranging from
×1.37 to ×3.3 compared to a (baseline) non-fault-tolerant system,
depending on the permanent-fault density. The area overhead
is 19.5% and the energy consumption, without incorporating
any power/energy-saving technique, is estimated on average to
be 20.9% higher compared to the baseline, unprotected design.

I. INTRODUCTION

Recent engineering trends have resulted in the emergence
of new challenges in multicore-computer design. With tran-
sistor device sizes now in the realm of nanometers and their
density increasing, one of the important factors that suffers
is reliability. Transistors of smaller size are more sensitive to
wear-out phenomena [1] and dielectric breakdown [2] resulting
in permanent faults that can render a device unusable. More-
over, it is argued that for the same reasons, the ability of the
designer to create a fault-free system will become increasingly
more difficult in the future while device testing will become
increasingly considerably lengthier (and costlier) [3]. The wide
use of embedded systems in various application domains and
the fact that such systems tend to become more complex and
advanced as time passes, makes reliability and availability an
even more pressing issue. Furthermore, there is a number of
mission-critical applications whereby a fault is unacceptable;
e.g. space, automotive, and medical applications. Such appli-
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cations require efficient techniques for fault tolerance to deal
with the increasing number of faults in emerging technologies.

In this paper we concentrate on system recovery from
permanent (or hard) errors – simply denoted in this paper
as faults – aiming at increased system availability and fault
tolerance at high fault densities. One general approach to fault
tolerance relies on dividing a design into basic blocks identical
to each other, called Substitutable Units whereupon so-called
sparing strategies are employed: A faulty block of a system is
substituted by a spare (functioning) one. Clearly, this strategy
requires redundancy of components used to replace damaged
parts so that the system can remain functional. The granularity
of the redundant components can be large (e.g. memories [4])
or small (e.g. adders [5]).

In our work we seek to combine sparing with the natural re-
dundancy that multicores exhibit creating a fault-tolerant (FT),
coarse-grain, reconfigurable multicore array (MA). Multicore
systems are often composed of multiple identical components,
thus encompassing significant amounts of inherent regularity
and redundancy. Then, if the architecture allows it, the spare
(undamaged) components could be used to repair a faulty core
improving the system’s availability and fault tolerance.

We use the pipeline stage of a processor as a Substitutable
Unit to implement our sparing strategy. When faulty cores
are detected, we isolate the dissfunctional pipeline stages and
replace them with existing spare functional ones to create new
working cores. This requires rewiring inter-stage connections
to divert the data flow around the faulty stages.

For diverting to spare units, state-of-the-art works such
as the StageNet [6], the Viper [7] and the CCA [8] have
used crossbars or all-to-one multiplexers introducing a (high)
uniform delay to the critical path of a processor. In contrast, we
use reconfigurable wires to interconnect the decoupled stages.
Reconfigurable wires have a delay proportional to the distance
between the spare and the replaced faulty unit. Consequently,
algorithms can be used to generate configurations that replace
faulty parts with closely located spare resources recovering
lost performance [9]. We, also, propose to pipeline these
reconfigurable wires, thus introducing extra, empty (bubble)
pipeline stages in the cores in order to further reduce the wire
delay at the cost of deeper pipelines. Therefore, for maintaining
a reasonable complexity/flexibility ratio, we are considering
reconfiguration only for the wires between stages.

Besides, we wish our proposed design to be attractive
for realistic use. We have, thus, placed the strict design



requirement that the proposed FT MA (in all its configurations)
will be binary-compatible with the baseline, unprotected MA.
This means that the multicore reconfigurability functionality
will have to be completely transparent to the application level.

However, to enable MA reconfigurations while guarantee-
ing backwards (ISA) compatibility regardless of the different
MA configurations, several micro-architectural modifications
are required. These modifications, both at the core- and at the
system-level are tackled in this paper.

Concisely, the main contributions of this work are:

• The design and implementation of a novel core based
on a 5-stage RISC pipeline with decoupled stages
to simplify reconfiguration. Through (i) distributed
control logic, and (ii) dynamic insertion of a variable
number of empty stages, the core offers binary com-
patibility among the baseline MA and the various FT
MA configurations.

• The design, implementation and evaluation of a
coarse-grain, reconfigurable MA that uses the above
core and reconfigurable interconnects to tolerate per-
manent faults.

• The fault-tolerance analysis of our FT system com-
pared to a reference FT system using core-level re-
dundancy.

The remainder of this paper is organized as follows: We
present related work in Section II. In Section III, we describe
the design challenges and the micro-architectural implementa-
tion of the pipeline, interconnect and the complete FT system.
In Section IV, we evaluate our approach on specific FT MA
instances (4-core, 6-core), highlighting its benefits in terms of
fault tolerance and availability while quantifying its overheads
in terms of performance, area, power and energy consumption.
Finally, in Section V overall conclusions are drawn.

II. RELATED WORK

In the past, several related works have been described
on homogeneous multicores. These solutions vary depending
on the chosen granularity that affects the performance/fault-
tolerance trade-offs and nature of the architectures.

One approach for the tolerance of permanent faults is that
of core redundancy [10], [11], defining the complete core as
a substitutable resource. This solution, in general, has the
advantage of simple implementation and lower performance
costs, compared to other granularity choices, but tends to be
less fault-tolerant than other solutions for high fault densities
where device degradation becomes less graceful.

Other works choose a finer granularity defining as substi-
tutable resources the processor components. The Viper [7] uses
a distributed execution engine composed of loosely coupled
functional units to form out-of-order pipelines, which execute
bundles of instructions (small blocks of instructions ending in a
control-flow instruction). At the same granularity, a damaged
core can share components (such as ALUs or floating-point
units) as described in [12]. Here, when a component is dam-
aged, the core can continue to operate correctly by replacing
the faulty parts with equivalent ones from a neighboring core,
suffering some performance overhead.

There are also a few works that have used the pipeline stage
as a Substitutable Unit. Such works are the StageNet [6] and
the Core Cannibalization Architecture (CCA) [8]. The CCA
approach does not allow a core to borrow more than one stage,
in order to keep the complexity of the control logic and, thus,
the performance overhead low. This constraint impacts, though,
the flexibility of the system and limits its fault tolerance. The
StageNet architecture decouples the various stages of a 5-stage
processor and interconnects them using crossbars [6]. When
an erroneous stage is detected the crossbars reroute the data
from the faulty processor stage into another spare one of the
cluster. This enables the design to be very flexible in replacing
faulty stages, alleviating the constraints found in the CCA.
The use of crossbars in this design, however, incurs significant
performance costs compared to the original 5-stage pipeline.
In the crossbar, the delay is constant regardless of the data
destination. In every case, the StageNet exhibits the maximum
delay overhead regardless of the number of operational cores
and of the distance of the neighbors sharing stages.

In our proposed reconfigurable interconnect, the perfor-
mance overhead is not constant and depends on the number
and position of faults. Additionally, the flexibility of the
reconfiguration is the same as in the StageNet, without the
limitations posed in the CCA architecture.

III. THE COARSE-GRAIN RECONFIGURABLE MULTICORE
ARCHITECTURE

In this section we describe the proposed coarse-grain
reconfigurable multicore architecture for providing tolerance
to permanent faults as well as the micro-architectural changes
needed to allow the pipeline stages to be decoupled and sub-
stitutable. Figure 1 illustrates a generic view of our approach.
Four cores have reconfigurable wires in between their stages
to bypass faulty stages (shadowed boxes) and form three
functional pipelines.

This MA is composed of a number of RISC cores,
each having 5 pipeline stages: Instruction Fetch (IF), Decode
(DEC), Execute (EX), Memory (MEM) and Write Back (WB).
The ISA comprises 32-bit instructions of 3 basic instruc-
tion types: integer-arithmetic, memory and control-flow. The
register file (RF) has 16 32-bit registers. Finally, there are
separate 4Kbyte instruction and 32Kbyte data memories of
32-bit words. In this work, the baseline RISC architecture
is modified to support the necessary flexibility for tolerating
permanent faults.

The design of an adaptive FT MA as the one we propose
is faced with two main challenges: (1) The architectural
challenge of building a FT multicore system, which is the
subject of this paper, and (2) the selection of a new, optimal
core configuration whenever a new fault occurs. The optimality
question is relevant here since the performance overhead
varies when connecting stages of different distances. This
problem has already been shown to be NP-complete and
has been tackled using a heuristic-search method in a work
complementary to the current paper: Vasilikos et al. [9] have
shown that a fast-greedy heuristic algorithm can generate array
configurations which achieve performances of 70% or better
with respect to an (exhaustively sought) optimal configuration.
It is worth noting that both the StageNet and the CCA cannot



Fig. 1. A generic view of the proposed coarse-grain reconfigurable multicore architecture. Dark boxes signify faulty stages. In this example, by rerouting the
data-flow we can create 3 functioning cores.

exploit such optimizations due to the fixed delay introduced by
the crossbars between the stages. In addition, the CCA places
strict constraints on the reconfiguration options to guarantee
that the rearrangement of stages will not drop performance to
unacceptable levels; therefore, choosing a configuration is – in
that case – substantially simpler.

A. General design functionality

As previously discussed, on one hand the StageNet pro-
vides very high flexibility but with a fixed, high overhead in
performance due to the constant wire delay. On the other hand,
the CCA achieves better performance but with strict constraints
which limit core flexibility and fault tolerance. Our approach
offers a combination of high flexibility and graceful perfor-
mance degradation by exploiting decoupled pipeline stages
and reconfigurable interconnects. A permanent fault can be
detected using techniques such as in [13]. In the presence of a
fault, the MA is turned off and a new configuration is pursued,
as described in [9]: The faulty stage is isolated and, if possible,
replaced by an available (identical) stage scavenged from
other damaged cores in the MA. Interconnect reconfiguration
enables the creation of new cores by tweaking the interconnect
switches in a way that the data-flow is redirected through the
spare stages (Figure 1). A simple control using the result of the
heuristic search can handle the switch re-configuration. In the
scope of this work we consider the interconnect as unprotected.
As far as the control logic of each core is concerned, the core
sparing policy makes it obvious that the end design cannot be
governed by global control signals. Instead, the control path
needs to be distributed across the various, decoupled stages.

The algorithm for generating new configurations has the
twofold objective of providing as many functioning cores as
possible and of maximizing their performance. An obvious
concern for performance is the interconnect wire delay: The
further away the cores sharing stages are, the longer it takes
for the data to travel through the interconnect and the larger
the impact on the critical-path delay (and performance) of the
design. To tackle this, we pipeline the interconnect. We specify
that each core in the array has its own plane wherein the wire
delays are in acceptable levels, meaning that signals between
stages of the same core do not need to be pipelined further. On
the other hand, we assume (perhaps pessimistically) that the
wire delays for data to travel from one plane to its immediate
neighbor need one extra register level to avoid violating the
baseline critical-path delay. The further away the data needs
to travel from its original core, the more extra empty (or
bubble) stages need to be inserted into the respective pipeline

to maintain a constant critical-path delay, of course at the
expense of additional clock cycles.

The immediate effect of this method is that we eventually
get a design with a variable number of pipeline stages. Our
core architecture should support such functionality and operate
correctly while remaining oblivious to the number of (extra)
stages in its pipeline; that is, reconfigurability needs to be
transparent to the application level. This design requirement is
imperative for guaranteeing binary compatibility between the
FT MA and a reference, unprotected MA, regardless of the
configuration state of the former. Binary compatibility means
that no recompilation of the binaries running in the cores is
required, which is a crucial feature for adoption by the industry
of our proposed FT MA.

The binary-compatibility requirement further explains our
design choice to limit reconfigurability to only the wires
between stages (cf. functional-unit reconfiguration). This ap-
proach not only makes the reconfiguration process faster (by
keeping complexity tractable) but also contributes to making
the reconfiguration effects transparent to the core ISA.

B. The fault-tolerant pipeline

The decoupling of pipeline stages and the design require-
ments mentioned in the previous section call for several micro-
architectural changes in the data flow and control flow of
the baseline core. Allowing a variable number of stages per
processor and eliminating global control directly influences the
resolution of hazards in a typical 5-stage RISC architecture.
The issues that need to be addressed to provide a fault-tolerant
pipeline according to the previous requirements are three:

1) Data-hazard resolution;
2) Control-hazard resolution and pipeline flushing; and
3) Global-stall support.

Next, we present these three issues in more detail and
describe the distributed strategies devised for tackling them.

1) Data-hazard resolution: Since we allow a variable
pipeline depth, the moment that a value (produced by an
instruction) is committed is not fixed. Whenever extra bubble
stages are inserted after the DEC stage, the direct effect is that
the number of potentially uncommitted instructions traveling
through the pipeline increases. Thus, the instruction window
within which a data conflict may occur increases, too.

Having in mind that the more stages we have in the pipeline
the more places need to be checked for data conflicts, one



Fig. 2. Data conflicts on a reconfigured core. The reconfiguration calls for 2 extra bubble stages (a case that can arise if EX is replaced). Extra dependency
checks are required.

immediate optimization can be done in the architecture: the
incorporation of the write-back stage in the interconnect. Even
though the WB logically does separate actions, physically it
shares the bulk of its logic with the DEC stage (practically
with the RF). The only extra hardware in the WB stage is,
then, a few multiplexers. If these are placed physically at the
DEC stage, the only logic that is left in the WB stage is the
write-back (feedback) wires which can be easily incorporated
in the interconnect. The functionality of the processor remains
the same but, without loss of generality, we can now approach
the architecture as a 4-stage pipeline. The number of possible
bubble stages that need to be inserted decreases as there
are fewer possible connections between stages. Also, fewer
possible uncommitted instructions are in flight at any given
time, simplifying data-hazard handling substantially.

Generally speaking, the proposed MA increases data-
hazard resolution complexity. Every single bubble stage, in-
serted due to a reconfiguration, has to be checked for de-
pendencies in order to detect all data conflicts. Moreover,
if the pipeline incorporates value bypassing to service the
conflicts, a feedback line is needed from each new stage to
the stages that might require a forwarding value, mainly the
EX and MEM stages. A processor with two bubble stages
and the feedback lines needed to resolve its data hazards
are illustrated in Figure 2. Additionally, there exist cases
where simple bypassing is not sufficient for resolving data
conflicts. These are conflicts between a memory operation
and a subsequent arithmetic operation. In such cases, pipeline
stalling is required (to be discussed in detail in Section III-B3)
combined with some more advanced data-hazard resolution
mechanism. The problem in our FT-MA case is that the number
of stall cycles needed varies depending on the number of stages
in the pipeline. In either case, simple bypass signals between
stages cannot work and a resolution mechanism is needed
which is agnostic to the number of stages in the pipeline
and can handle the variable pipeline depth. This mechanism is
called pipeline state saving and is described below.

Pipeline state saving keeps track and bypasses uncommitted
results in the pipeline locally, eliminating the need for depen-
dency checks and forwarding via feedbacks. It is implemented
by saving copies of the produced (still uncommitted) results
locally at the stage where they are produced and would
possibly need to be forwarded to for data-hazard resolution.
There are two such stages in our pipeline, namely the EX
and MEM stages. For this reason, all uncommitted results of
instructions in flight are stored locally in the EX and MEM
stages in two FIFOs acting as bypass buffers. Each bypass
buffer provides read access to its entries in order to forward

Fig. 3. The bypass buffers implementing the bypass mechanism.

any of the stored values.

In order to have sufficient information about the uncom-
mitted instructions in the pipeline, 3 types of data need to be
stored in the bypass buffers:

• The instruction type encoded in a 2-bit ID, which
determines whether an instruction (i) produces a value
in the ALU or (ii) is a Load or (iii) does not produce
a value to be written to the RF;

• the destination register (DREG) of the produced value
(if any); and

• the actual produced value (if any).

The size of the bypass buffers is determined by the worst-
case pipeline depth, since it must be deep enough to store all
uncommitted results. This, in turn, depends on the number
of processors (N) in the array and the maximum number
of bubble stages inserted to connect two stages in a valid
array configuration. A bypass buffer of 2N − 1 entries in
each of the EX and the MEM stages suffices to cover the
worst-case pipeline depth. As depicted in Figure 3, the buffer
in EX provides the values that arithmetic instructions need
from instructions still traveling in the subsequent stages. The
logic in MEM services the dependencies concerning memory
(load/store) operations. When an instruction enters one of
the two stages, the buffer entries (ID and DREG fields) are
checked for a data conflict. A match in any of the entries
indicates a hazard and the value of the uncommitted instruction
is read and forwarded. If a value produced in the MEM stage
is not in the buffer yet, the stage stalls (including the buffers)
until the value is provided. A bypass signal is used to provide
values from the MEM to the EX buffer. This signal is also
pipelined if bubble stages have been injected between the
EX and MEM stages. Since the maximum distance possible
between two uncommitted instructions that produce an as-of-
yet undetected conflict is 2N − 1 (due to the maximum span



of N cores, forward and return signals), the 2N − 1 entries
in the buffers are sufficient to keep track of all instructions in
flight without evicting useful entries prematurely.

2) Control-hazard resolution and pipeline flushing: The
second major issue to be addressed is control-hazard resolution
and the mechanism of pipeline flushing. When a branch
misprediction occurs, a number of invalid instructions, fetched
before branch resolution occurs, need to be flushed. In order
to avoid long wires in the MA, a scheme is needed for
flushing the pipeline without using global signals. We have
incorporated a scheme similar to that in the StageNet, yet
somewhat simpler because of the difference in the architectures
of the two solutions. The StageNet implements a common EX
and MEM stage and a separate Issue and DEC stage, including
a scoreboard; this creates the need for more localized checks,
compared to our case, for correct control-hazard resolution.

As shown in Figure 5, the IF and EX stages include an
Instruction-Flow bit (InF). Its value is used to identify whether
an instruction is valid or is part of an invalid instruction
stream due to a misprediction. More precisely, each instruction
travels in the pipeline carrying one additional bit, a Stream
Identification Bit (SIB). Its value is given in the IF stage, when
the instruction is fetched, by the InF register of that stage.
When an instruction enters the EX stage, its SIB is compared
to the InF bit of the stage. If the values match, the instruction
is allowed to continue, otherwise it is flushed and not allowed
to make any changes in the bypass buffers of the EX stage.

In case a branch misprediction is detected in the EX
stage, the value of the InF bit of the stage is inverted. When
the correct branch target is loaded to the PC, the IF-stage
InF-register value is also toggled. As a result, the invalid
instructions that were fetched in-between, are marked with a
different SIB than the current value in the EX InF register and
are therefore flushed. The subsequent instructions will have, on
the other hand, the same SIB value as the InF register in the EX
stage and execute normally. As such, the flush mechanism for
a branch misprediction is implemented locally in the EX stage,
eliminating the need for global flush signals, while requiring
very little extra circuitry.

3) Global-stall support: Decentralizing the core control
logic calls, lastly, for a new mechanism to facilitate pipeline
stalling. In order to avoid global signals there are two methods
that could be used, each with is own merits:

• Per-cycle propagation of the stall signal across stages.

• Implementation of the stall functionality by flush and
reload instead of an actual pipeline stall.

In the first alternative, stalls propagate their signals along
the entire pipeline. The number of additional cycles needed
for stall propagation is expected to be lower than that of
flushing. However, stalling requires the use of double buffers
at the output of every pipeline stage. This would ensure that no
instructions are lost due to the propagation delay of the stall
signals from stage to stage. Besides the area overhead, this
would increase the critical-path delay of the pipeline and, in
addition, would virtually introduce extra “stages” in the core
pipeline requiring larger bypass buffers and even longer delay.
Therefore, we chose to implement a flush/reload scheme.

Fig. 4. Reconfigurable interconnects using bidirectional switches.

The flush/reload scheme is simpler to implement: When
the need for a stall arises, the core drops the currently fetched
instruction as well as all subsequently fetched ones the moment
it produces a stall. Then, it reloads the dropped instruction on
the IF stage. By the time the instruction reaches again the stage
in which the need for pausing the pipeline arose, the situation
is expected to have been resolved and execution resumes; if
not, it is stalled (flushed) again. The bypass buffers are also
stalled when an invalid instruction enters the stage so as to
retain their state throughout the stalling.

In our particular RISC pipeline, the need for stalls due
to a dependency can only arise when an instruction requires
a value in the EX stage. As such, we use the same flush
mechanism described for control hazards. The only addition
is some extra logic for activating the mechanism when a
dependency requiring a stall is detected and for adding this
case in the PC selection in the IF stage.

The same stalling mechanism is needed in case of cache
misses. In our experiments, we consider one level of memory
(4KB IMEM, 32 KB DMEM) which takes one cycle to access
and, therefore, do not have cache misses. In a different memory
hierarchy, cache misses may yield additional performance
overheads, compared to the traditional stall scheme. However,
if we synchronize the resuming of execution, after flushing,
with the arrival of the data that caused the cache miss, then
the performance penalty of flushing would be the same as for
stalling. In case the execution is resumed only after the data
arrives, then the additional overhead compared to stalling shall
be equal to the number of cycles needed for the instruction to
reach again the MEM stage. Such overhead is probably small
compared to the number of cycles needed to fetch data from
the main memory or the disk.

C. Reconfigurable interconnects

An important element of the complete core is the recon-
figurable wires between the cores stages. The more flexibility
one includes in the switching nodes, the better configurations
can be achieved in terms of performance and efficiency,
paying the cost of added functionality in area and power. As
illustrated in Figure 4, the reconfigurable wires interconnect
two subsequent stages of the same cores, as well as stages of
different cores. We have opted for bidirectional wires rather
than double, unidirectional wires. This choice reduced the total
number of wires needed but possibly increased the delay of the
switches which now need to use tri-state buffers. Each switch
is controlled by a 3-bit signal. The bidirectional switches are
able to send data from the level above to the level below (and



Fig. 5. The proposed multicore system, illustrating the decoupled pipeline stages, the interconnect switches, bi-directional registers, bypass buffers and
instruction-flow registers.

vice versa) while the normal input/output path is also in use.
This offers to the system high reconfiguration versatility and
results in better configurations in case of a fault.

D. Overview of the proposed system

An overview of the proposed system is shown in Figure 5.
Each core consists of 4 decoupled stages interconnected using
switches to reroute the data according to the configuration of
the MA. Data traveling from one core to another pass from one
switch to the one directly above or below through a pipelined
wire. Except for the switches that forward the data coming out
of the pipeline registers from one stage to the next, there are
also additional switches to route the bypass signals from MEM
and EX stages. These signals are needed for memory-value
bypassing and for branch resolution. To illustrate the costs, an
example 4-core array requires 16 switches for passing the data
though the pipeline and 8 more for the bypass signals, plus 24
bi-directional registers.

IV. EVALUATION

In this section, we first describe our experimental setup and
benchmarks used. Subsequently, we measure the performance,
area, power and energy overheads of our proposed approach
and, finally, analyze the benefits of the reconfigurable MA in
terms of fault tolerance and availability.

A. Experimental setup

For fast processor implementation, we have used a high-
level description language (Lisa 2.0) through the Synopsys
Processor and Compiler Designer tool. With this toolset we
automatically generated an RTL description of our processor
as well as a simulator and a compiler. However, this advantage
comes with the cost of having less control on the produced
RTL, which could be significantly more optimized if done

IF DEC EX MEM 

IF DEC EX MEM 

IF DEC EX MEM 

IF DEC EX MEM 

IF DEC EX MEM 

IF DEC EX MEM 

IF DEC EX MEM 

IF DEC EX MEM 

Wcase1 Wcase2 

Fig. 6. The two worst-case scenarios used in our experiments. In light gray
the still functional stages of the configuration.

manually. Cadence Encounter RTL compiler was used to syn-
thesize our design at STM 65nm SP technology and acquired
measurements of area, power, energy and timing.

As benchmarks for our evaluation, we use small custom, C-
code fragments running in a loop, created to test the efficiency
of our proposed MA design under hazards. The benchmarks
are extreme cases of instruction sequences that exacerbate
processor performance and are important for assessing worst-
case costs as well as for debugging and validating our design.
Our benchmarks are the following:

• Function-Argument Heavy: Code that includes a
function with a large number of arguments, prone to
creating data hazards between arithmetic and mem-
ory operations, useful to assess the impact of the
Flush/Reload mechanism when stalling the pipeline.

• Heavy Read-After-Write Conflict: Code that pro-
duces a large amount of RAW hazards, activating
the bypass mechanism, which has an increased delay
or flush penalty as the number of pipeline stages
increases.

• Heavy Branch-Mispredict: A loop with non-taken
branches used to assess the flush/reload mechanism,
here mostly employed for branch misses. A significant



Fig. 7. Execution cycles for each benchmark for each test design, normalized by the baseline cycle count.

Fig. 8. Execution time for each benchmark normalized to baseline values.

performance impact is expected in configurations with
long pipelines.

• Normal-C for-loop: A typical C for-loop. A large
overhead is expected in configurations with long
pipelines.

The experiments were performed in:

1) a (single-core) Baseline pipeline;
2) our new (single-core) FT pipeline, as would operate

in a 4-core system without faults (see Section III);
and

3) in two different, 4-core complete configurations rep-
resenting two of the worst instances (Wcase1 and
Wcase2) in terms of pipeline depth (Figure 6).

Wcase1 and Wcase2 represent instances of 75% of the
system being damaged while still being able to provide a
functioning core. In Wcase1, the top core uses the MEM stage
of the bottom core. The system adds the maximum possible
number of stages between EX and MEM stages suffering from
the longest possible delays in both the WB and the forwarding
signals. Furthermore, this increases the instruction window
that data hazards might occur in while at the same time the
pipeline requirement to wait for the transfer of values from
MEM to EX for bypassing is maximized. In Wcase2, which
is the worst-case possible in our system, a pipeline is formed
connecting the IF and EX stages of the top-most core with
the DEC and MEM stages of the bottom-most core. Here,
in addition to the overhead of the previous configuration, we
have an increased cost when flushing the pipeline in the case
of branch mispredictions and data-hazard stalls due to the extra
stages before and after the DEC stage.

B. Experimental results

Figure 7 depicts our benchmark results in terms of execu-
tion cycles. Between the baseline and our FT pipeline there
is only a small difference in execution cycles in the case
of the Argument-Heavy benchmark (about 7.5%), which is
attributed to the flush/reload mechanism. On average, our FT
processor – in the absence of faults – has a small overhead of
1.8% in execution cycles. For the 2 worst-case configurations,
shown in Figure 6, the overheads are considerable (×1.8 and
×2.5, respectively) but are incurred only in the worst-case
configurations, after a large number of faults has occurred,
which would normally render a baseline design entirely non-
functional.

Table I reports the timing of the baseline pipeline, com-
pared to our stand-alone FT pipeline and compared to a 4-
core system with and without pipelining of the interconnects.
The baseline core has a cycle time of 1.45ns. Our micro-
architectural changes have yielded a clock cycle of 1.65ns
(13.7% overhead). This is mostly a consequence of the by-
passing mechanism which, together with the other additions
described in the previous section, are all in the critical path
reducing the operating frequency. The full 4-core system with
non-pipelined interconnect has a clock period of 2.2ns, incur-
ring a substantial overhead of 33.3% compared to the stand-
alone FT core and 51% compared to the baseline core. When
pipelining the interconnects, these overheads are reduced to
18.1% and 34.4%, respectively.

Considering the number of cycles needed per benchmark
and the above operating frequencies, we calculate the overall
execution time shown in Figure 8. All values are normalized



Fig. 9. Power consumption for our benchmarks normalized to baseline.

Fig. 10. Energy consumption for our benchmarks normalized to baseline.

TABLE I. TIMING MEASUREMENTS FOR OUR MA.

Design Clock Period
(ns)

Overhead vs
Baseline

Overhead vs
FT-pipeline

Baseline Pipeline 1.45 – –
Fault-Tolerant Pipeline (w/o switches) 1.65 13.7% –
4 Core w/o pipelined interconnect 2.2 51% 33.3%
4 Core w/ pipelined interconnect 1.95 34.4% 18.1%

to the baseline execution time. The increase in execution time
ranges from ×1.37 (normal fault-free operation of the 4-core
array) to ×3.3 (Wcase2 scenario) compared to the baseline,
depending on the number of faults in the array.

Our architectural changes incur a 6% area overhead in
the FT pipeline as shown in Table II. This stems from the
bypass mechanisms in EX an MEM, the bypass buffers and
the additional logic required by the flush/reload-mechanism for
data- and control-hazard resolution. The 4-core system has an
area overhead of 19.5% compared to the 4-core baseline array
including the overhead of the reconfigurable interconnects.

Our single FT pipeline has similar power consumption
with the baseline as the increase due to the additional logic
is balanced out by the slower clock period. For the worst-case
pipelines, we can see an average increase in power of 19.8%
for Wcase1 and 39.1% for Wcase2 (Figure 9). In terms of
energy consumption, shown in Figure 10, the single FT core
exhibits a slight increase of 20.9% on average for our experi-
ments. For our two worst-case scenarios, the energy overhead
is much higher (Wcase1: ×2.9, Wcase2: ×4.6), which is to be
expected because of the increase in execution times. It must be
noted, though, that we did not use any advanced power-saving
technique in our design and experiments.

C. Comparison with related works

Although it is hard to provide a direct comparison with
related works, we discuss next the advantages and disadvan-

tages of our solution compared to the 3 closest approaches –
CCA [8], StageNet [6] and Viper [7] – when in fault-free mode.
The CCA introduces minimal micro-architectural changes al-
lowing stage borrowing only from immediate neighbors. This
design choice severely limits flexibility and fault tolerance
compared to the other approaches but at the same time restricts
the execution-time overhead to only 4.5%, as shown in Ta-
ble III. The StageNet and the Viper provide similar flexibility
to our solution, yet the performance overheads reported there
are, in fact, not the totals since they do not take into account
the non-trivial delay introduced by the added crossbars. By
ignoring this delay, we can state that the StageNet (w/o macro-
ops) has a uniform execution-time overhead of ×2.1 compared
to the baseline [6]. The optimized version with macro-ops
exhibits a lower overhead of ×1.2. Even by co-factoring in the
interconnect costs, our design exhibits a comparable overhead
to that of the macro-op-based StageNet and only one third
that of the bypass-cache-only StageNet (×1.37). The reason is
that our proposed FT MA allows graceful performance scaling
with the distance between the interconnected stages. Finally,
the Viper array has a variable overhead of 24% when compared
to a single out-of-order core and it rises up to 60% when
compared to the complete out-of-order baseline array due to
increased structural hazards. Moreover, in order for the Viper
to facilitate FT out-of-order execution, it requires compiler
changes. On the contrary, our FT MA offers full backwards
binary compatibility by keeping the hardware configurations
transparent from the MA ISA.



TABLE II. AREA MEASUREMENTS FOR SINGLE CORES AND 4-CORE SYSTEM. INSTRUCTION AND DATA MEMORIES INCLUDED IN THE MEASUREMENT.

Design Area in mm2

Baseline 0.416
Fault-Tolerant Core (w/o switches) 0.441 (+6%)
4 Core System 1.990 (+19.5%)

TABLE III. PERFORMANCE OVERHEADS AND BINARY COMPATIBILITY OF VARIOUS FT MULTICORE ARRAYS IN fault-free OPERATION.

Exec-time overhead vs. Binary Flexibility/
baseline baseline compatibility Fault-

FT-array design core array tolerance
Core-level redundancy — — yes low
FT MA 37.0% 37.0% yes high
CCA 4.5% 4.5% yes medium
StageNet (w/o macro-ops) >110.0% >110.0% yes high
StageNet (w/ macro-ops) >20.0% >20.0% no high
Viper >24.0% >60.0% no high

Fig. 11. Average availability: Average number of cores. Case1: Baseline (7 cores), Case2: Fault-Tolerant array (6 cores).

Fig. 12. Guaranteed availability. Case1: Baseline (7 cores), Case2: Fault-Tolerant array (6 cores).

D. Fault-tolerance analysis

Taking into account the area overheads of our multicore
array, we can estimate overhead scalability and assess the fault-
tolerance gains we achieve by paying the previously discussed
costs. In our analysis, we assume a fixed die area A available
to fit an array of 7 baseline cores (Case1) and an array of 6
FT coarse-grain cores (Case2) as proposed in this paper.

The fault tolerance of the above cases is evaluated using an
analytical model in Matlab considering that the probability of a
faulty substitutable unit (in each case) is Psf (N,Pf ) = N∗Pf ,
where Pf is the probability of a single-transistor-device to

be faulty and N is the number of devices per substitutable
unit [14]. We perform our analysis considering hard-error
densities of 1 fault per 0.6 to 5.5 million transistors (Pf being
between 1.8∗10−7 to 1.6∗10−6). Assuming a uniform random
distribution of faults, the above fault densities result in 10% to
90% probability to have 1 faulty transistor in area equal to that
of a baseline core (approximately 550k transistors). As shown
in Figures 11 and 12, we evaluate fault tolerance measuring
the average number of working cores (denoted as average
availability) and the probability to have at least one functioning
core (denoted as guaranteed availability) under different fault
rates for each of baseline and fault-tolerant systems.



For the average number of operational cores we can see
that the degradation of the baseline case is quite steep while
the FT MA case has a much smoother degradation because
of the fault tolerance provided. The FT MA curve meets the
baseline one at the fault density of about Pf = 6∗10−7 (1 fault
per 1.6 million transistors). For higher fault densities, the FT
system becomes more efficient than the baseline (even though
the baseline system fits more cores in the area A) providing
up to ×4 more functioning cores. In terms of the probability
to have at least one functioning core in the array, the FT case
has a probability close to 1 across all fault densities. On the
contrary, a significant drop for the baseline system can be
observed for fault-densities higher than Pf = 10−6 (1 fault
per 1 million transistors) down to about 50% probability to
deliver a functioning core.

V. CONCLUSIONS

In this paper we described the design of a fault-tolerant
multicore array based on a reconfigurable pipelined inter-
connect. We described the architectural changes required to
decouple the stages of a processor and allow them to be
interchangeable. We further measured the performance, area,
power and energy overheads of the added reconfigurability and
evaluated the benefits of the improved fault tolerance. Our
4-core array can retain correct functionality with maximally
75% of the system being non-functional. Our architecture is,
further, able to achieve up to ×4 better availability and almost
×2 higher probability of delivering at least one functioning
core at fault densities above 1 fault per million transistors.
The proposed micro-architecture requires about 1.8% more
execution cycles for our benchmarks and has a critical-path
delay overhead of 34.4%. A 4-core FT system implemented
as described with pipelined interconnects is ×1.37 slower
compared to the baseline. In fault-free operation, our 4-core
system has one third of the performance overhead compared to
the StageNet due to our choice of reconfigurable interconnects,
it exhibits 20.9% higher energy, on average, and 19.5% more
area.
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