
mCluster: A Software Framework for Portable Device-based Volunteer Computing

Dimitris Theodoropoulos, Grigorios Chrysos, Iosif Koidis, George Charitopoulos,
Emmanouil Pissadakis, Antonis Varikos, Dionisios Pnevmatikatos

Microprocessor and Hardware Laboratory, Department of Electronic and Computer Engineering,
Technical University of Crete Chania, Greece

Email: {dtheodoropoulos, chrysos, koidis, gcharitopoulos, pnevmati}@mhl.tuc.gr {epissadakis,avarikos}@isc.tuc.gr

Georgios Smaragdos
Christos Strydis

Dept. of Neuroscience
Erasmus Medical Center

Rotterdam, The Netherlands
Email: {c.strydis,g.smaragdos}@erasmusmc.nl

Nikos Zervos
Algosystems S.A.
Athens, Greece

Email: nzervos@algosystems.gr

Abstract—Recent market forecasts predict that the portable
computing trend will vastly spread, as by 2020 there will be
more than 3 billion LTE device users worldwide. Motivated
by this fact, many companies and research institutes have
already launched research projects that utilize portable de-
vices, voluntarily provided by users, to perform the required
computations. Many such projects employ Berkeley’s BOINC
middleware, since it can support a large variety of stationary
and mobile devices. However, currently available BOINC
high-level APIs, either do not support portable devices or
lack advanced processing capabilities (such as inter-node task
dependencies) and/or easiness of use. To resolve these issues,
we propose the mCluster software framework for application
execution powered by the BOINC middleware on portable de-
vices. mCluster adopts a task-based programming model that
requires simple, pragma-based annotations of the application
software, in order to dynamically resolve task dependencies.
To evaluate our framework, we have have mapped a scientific
application from the neuroscience domain on an small-scaled
network of portable devices. mCluster significantly reduces
the required programming effort and complexity to efficiently
map BOINC-powered applications with task dependencies on
portable devices compared to previous approaches.

Keywords-Task-based programming, internet of things, vol-
unteer computing

I. INTRODUCTION

Volunteer computing is a form of distributed computing.
It pertains to computer or mobile device owners (volun-
teers), who donate their processing power and / or storage
resources to scientific projects that need to execute com-
putationally intensive software routines (tasks). Volunteer
computing was first applied by the ”Great Internet Mersenne
Prime Search” project1 in 1996. However, it was mainly
established in the early 2000’s, when the University of
California, Berkeley released the BOINC middleware [1]
to the public. To date, BOINC is still the most widely
used middleware that scientists and companies utilize to

1http://www.mersenne.org/

launch research projects on distributed networks of desktop
computers and mobile devices (smartphones and tablets)2.

Although many companies and universities have ac-
knowledged the power of volunteer computing, and used
BOINC to launch a variety of research projects, it is
still applied with limitations mainly due to the following
reasons:

• Currently, BOINC does not support inter-node task
dependencies, hence limiting the nature of projects and
applications that are applicable for volunteer comput-
ing. Task dependencies are only supported at intra-
node level, where developers manually divide an ap-
plication into sets of dependent tasks, and assign each
set to a virtual machine hosted on a client node [2].

• Setting up and launching research projects, requires (a)
skills and experience in computer-science aspects, and
(b) significant effort and time (the very same experi-
ence that this team had while carrying out this work).
As a result, scientists from other research domains
(e.g. astrophysics, seismology, biology, biomedical,
financial) find very hard starting such projects, which
also impacts volunteer computing.

To alleviate these issues, in this paper we propose the
mCluster software framework for portable device-based
volunteer computing powered by the BOINC middleware.
With our work we strive to facilitate the deployment of
applications on distributed networks consisting of portable
devices, and minimize the enormous effort and knowledge
currently required to successfully launch research projects
powered by BOINC. Towards this, mCluster adopts a task-
based programming model that requires simple pragma-
based annotations of the application software, in order to
dynamically resolve task dependencies. In other words, sci-
entists and developers need only to insert certain key-words
in their original software to describe task dependencies,
which mCluster automatically handles at runtime. Overall,

2https://boinc.berkeley.edu/

the paper contributions are the following:

• We propose the mCluster software framework for
application execution powered by BOINC on portable
devices. Our framework extends the BOINC infras-
tructure with a task-based programming model that
requires simple, pragma-based task annotations.

• The mCluster implementation is bundled with the
BOINC middleware; it resolves all inter-node task
dependencies at runtime, a feature that -to the best
of our knowledge- was not previously supported.

• We provide a first mCluster-compatible implementa-
tion of a biologically accurate brain simulation (Infe-
rior Olive), and execute it on an experimental network
of smartphones and tablets.

The rest of the paper is organized as follows: Section II
provides references to related work and various projects
based on volunteer computing. Section III describes the
mCluster front-end, while Section IV its integration with
the BOINC middleware. Section V presents the Inferior-
Olive application implementation. Section VI describes our
experimental setup and evaluates the mCluster framework.
Section VII discusses our future work and concludes the
paper.

II. RELATED WORK

Distributed computing has already been utilized in vari-
ous projects, such as the BOINC middleware [1] and Wis-
consin Condor [3], however they target desktop computers
as processing nodes. A few years ago, BOINC started
supporting mobile devices via client applications that users
can download from the Google Play app store3 to perform
volunteering processing for specified scientific problems.

A significant amount of work can be found on adding
virtualization to BOINC [4], [5], [2], [6]. Virtualization
offers many benefits for the host machine, such as appli-
cation porting, security and system-level checkpointing, at
the expense of increased resource utilization and slightly
degraded performance. Moreover, [7] presents DC-API, a
simple API specifically targeted for desktop grid systems
that overcomes the lack of Java-application support in
BOINC-powered desktop systems. Although, DC-API hides
many low-level details of the BOINC infrastructure simi-
larly to our approach, it only supports desktop computers
as clients.

Major mobile-market companies (e.g. HTC, Samsung,
IBM, Sony) offer BOINC-powered applications that users
can download from app stores to actively contribute to
specified scientific problems (cure for cancer, Alzheimer’s
disease and AIDS)4, 5, 6, 7. However, to date, volunteer

3https://play.google.com/store/apps/details?id=edu.berkeley.boinc
4https://play.google.com/store/apps/details?id=com.htc.ptg
5https://play.google.com/store/apps/details?id=at.samsung.powersleep
6https://www-03.ibm.com/press/us/en/pressrelease/45594.wss
7https://play.google.com/store/apps/details?id=com.

sonymobile.androidapp.gridcomputing

//vectors addition task
void v_add(int *vA,int *vB, int *vC) {

//vectors addition code
..

}
//vectors subtraction task
void v_sub(int *vA,int *vB, int *vC) {

//vectors subtraction code
..

}
//vectors multiplication task
void v_mult(int *vA,int *vB, int *vC) {

//vectors multiplication code
..

}
int main (){

//vectors declaration
..
//vectors initialization
..

#pragma mcluster input (int &v1[0],VECTOR DIM,int &v2[0],
VECTOR DIM) output (int &v3[0],VECTOR DIM)

v_add(&v1[0],&v2[0],&v3[0]);
#pragma mcluster input (int &v3[0],VECTOR DIM,int &v5[0],
VECTOR DIM) output (int &v4[0],VECTOR DIM)

v_sub(&v3[0],&v5[0],&v4[0]);
#pragma mcluster input (int &v4[0],VECTOR DIM,int &v6[0],
VECTOR DIM) output (int &v3[0],VECTOR DIM)

v_mult(&v4[0],&v6[0],&v3[0]);
return 0;

}

Figure 1: Application-task annotation with the mCluster
pragma keywords.

computing has been applied with limitations, since launch-
ing portable devices-based projects requires significant ef-
fort. Moreover, efforts on supporting task dependencies are
limited at host-level [2]; a virtual machine running on a
host, can resolve dependencies only among tasks that are
executed locally.

III. THE MCLUSTER FRAMEWORK

Programming Model: mCluster adopts a task-based pro-
gramming model that requires developers to simply pragma-
annotate the application code to dynamically resolve task
dependencies when executed on a BOINC-powered envi-
ronment. Figure 1 illustrates an example of a simple code
that processes 1-d vectors. There are three tasks, namely
”v add”, ”v sub” and ”v mult”.

To define application tasks, developers need to insert
above each task the #pragma mcluster string, followed
by the input keyword. This defines all task inputs, where
developers insert within parenthesis each input type, starting
address and size, all separated by commas. Similarly, devel-
opers can define all task outputs with the keyword output,
followed within parenthesis by each output type, starting
address and size.

Our framework supports all input/output types, i.e. char,
short, int, float, double and structs. Furthermore, it also pro-
vides manual task synchronization with the mClusterSync()
function (discussed in Section V). The latter essentially
works as a sync barrier that suspends further application
execution, until all currently dispatched tasks have returned
their outputs. It should be noted also that the mCluster API

BOINC
databases

application
tasks

mCluster
servers

v_sub
BOINC app

v_mult
BOINC app

v_add
BOINC app

B
O

IN
C

 m
id

d
le

w
ar

e

mCluster pragma
annotated application

v_add v_sub v_mult

m
C

lu
st

er
 B

O
IN

C
 im

p
le

m
e

n
ta

ti
o

n

mCluster BOINC back end files

BOINC
compatible

clients
mCluster BOINC

back end files

create tasks
graph

create BOINC
project and apps

create WUs

wait assimilated
results

all apps
are done?

done

YES

NO

= source-to-source translation

Figure 2: The mCluster BOINC implementation, where the original pragma-annotated code is source-to-source translated
to generate all BOINC-oriented back-end files.

imposes certain limitations, such as nested task annotation.
In other words, developers are not allowed to annotate a
task within an already annotated task.

mCluster Front End: The mCluster front end is re-
sponsible for translating the annotated code to source
files compatible with BOINC-specific API calls for task
generation / management. As observed, the original code
includes Write-After-Write (WAW) hazards between v add
and v mult tasks, and Write-After-Read (WAR) hazards
between v sub and v mult tasks. We have implemented
an in-house source-to-source translator that works in two
phases: First, all WAR and WAW hazards are resolved
using the task-output renaming technique described above.
At the second phase, the generated code (a) keeps all task
metadata (i.e. unique id, input/output parameters and their
sizes) in private structures, and (b) replaces all #pragma-
based annotations with middleware-specific API calls for
task generation/management. We should note though that
task-output renaming introduces a storage overhead, since
it increases the total number of arguments used during the
application execution. In the next section, we describe our
mCluster implementation that utilizes the BOINC middle-
ware for tasks dispatching to portable devices.

IV. MCLUSTER IMPLEMENTATION

Figure 2 illustrates the mCluster-BOINC implementation.
Considering as example application the source code de-
picted in Figure 1, the workflow proceeds as follows:

Remove data hazards and generate BOINC-compatible
back end files: As described in Section III, the original
annotated code is source-to-source translated, in order to (a)
remove any WAW and WAR hazards among tasks, and (b)
generate the required BOINC-compatible back end files for
task generation / management. In order to tackle inter-node
tasks dependencies and, at the same time, follow the strict
project/application BOINC structure, we associate each task
with a BOINC application [1].

Thus, the mCluster back end BOINC files (a) parse the
original code to keep all task metadata (i.e. unique id,
inputs/outputs parameters and their sizes) in private struc-
tures, (b) run the required BOINC scripts to generate a new
full BOINC project (including its internal databases and
other structures), and (c) automatically generate a unique
BOINC application associated to each annotated task in
the original code, excluding its Work Generator (WG) [1],
thus suspending execution. As soon as all applications are
created, every client device that is registered to the BOINC
project will receive all task executables and be ready to
accept task instances for execution.

Start ready BOINC applications: mCluster traverses the
generated task graph and starts all BOINC applications with
ready inputs by automatically generating its WG. Note that
issues like fault tolerance and task starvation are handled
by BOINC, as each task is issued to more than one portable
device, and if a task gets timed out, it will be assigned to
another device.

Wait assimilated results: mCluster halts further execution
of the back end files, until at least an application reports
new results in its corresponding BOINC assimilator [1].
Based on the updated ready data, mCluster traverses further
into the task graph to identify which BOINC applications
have their inputs now ready, in order to proceed to step
2. mCluster also deletes all BOINC applications whose
outputs are no longer needed, keeping at minimum resource
utilization on the server side. If all BOINC applications are
done, it exits.

It should be noted that the number of concurrently ”ac-
tive” BOINC applications depends on the server resources
capacity (e.g. CPU power, available memory, etc). For this
reason, mCluster has the option to constrain them up to a
predefined limit, in order not to overload the server ma-
chine. Such a case can occur for example within for-loops
iterated hundreds or thousand times that call independent
task(s).

v1

T1

v2

T3

T2

T4

T5

T6

T7

v3

v4

v5

v6

T1, T3, T4 = add task

T2, T5, T6, T7 = sub task

Figure 3: The synthetic micro-benchmark used for our
experiments.

V. CASE-STUDY APPLICATIONS

To verify the correctness and evaluate the feasibility of
our approach, we have performed tests with a synthetic
micro-benchmark and a real, computationally intensive ap-
plication from the biomedical domain [8].

Vector-processing micro-benchmark: Figure 3 illus-
trates our synthetic micro-benchmark that imposes various
dependencies among tasks. All task inputs and outputs are
1-d vectors. More specifically, v1 to v6 are input vectors
to tasks, T1, T3 and T4 tasks perform vector addition, and
T2, T5, T6 and T7 perform vector subtraction. Within the
original micro-benchmark, we annotated each task with the
mCluster keywords as described in Section III.

The Inferior-Olive application: The main goal of accu-
rate brain simulation is the accelerated brain research, by
the creation of more advance research platforms. There are
two distinctive threads in experimentation using accurate
computational neuron models: Either (a) real-time or close
to real-time, high-performance modeling experiments, or (b)
large-scale network experimentation, in much lower than
real-time performance, where simulation speed is traded
for experiments in network sizes respective to the actual
biological network (the human cerebellum consists of 50
billion cells).

mCluster can effectively support such demanding re-
search domains, by distributing neuron-cell computations
in the virtual cluster of portable devices (many of them
based on commercial GPGPUs). Even though there would
be a significant data-transfer penalty due to the wireless
communication involved, data-transfer demands in the case
of accurate-model simulations are low compared to the
computational demands. By taking into account the fact
that almost 200 million devices are sold to the public every
quarter year, an mCluster implementation of this application
shall give the ability to perform brain simulations (a) with
biologically accurate neuron models, (b) in the realistic
sizes of several millions of neurons, and (c) in a small
fraction of the cost compared to investing on a CPU or
GPGPU cluster.

In its current version, the application models, in time

...

...

...
DIM_X

D
IM

_
Y

simSteps 0

= 1 cell, compute stages:

...

...

...

...

...

...

...
DIM_X

D
IM

_
Y

...

...
...

...

...
DIM_X

D
IM

_
Y

...

...

1 N-1

...

= Axon = Soma = Dendride

Figure 4: Illustration of the Inferior-Olive application exe-
cution procedure.

steps of 0.05 msec each, the state of a 2-d neurons grid
(cells), all interconnected with their 8 neighbours. Each
cell consists of three main computational stages (Dendride,
Soma and Axon). Figure 4 illustrates this procedure for
N simulation steps (simSteps). At every simStep, a task
calculates a cell’s state within the 2-d cell grid with dimen-
sions DIM X x DIM Y, while all tasks can be executed
concurrently.

VI. EXPERIMENTAL RESULTS AND EVALUATION

Experimental System: To verify our BOINC-compatible
implementation we deployed an experimental system con-
sisting of one BOINC server machine and six client devices.
The BOINC server is hosted on a 64-bit Ubuntu 12.04 LTS
virtual machine (VM) with a single-core CPU at 2.1 GHz,
4GB RAM and 20GB storage. The client machines are two
Samsung Galaxy S4 smartphones and four Asus Nexus 7
(2013) tablets under different Android versions.

Micro-benchmark evaluation: We annotated the task
graph source code (Figure 3) with the mCluster #pragma
keywords. mCluster automatically source-to-source trans-
lated the original code, generating the corresponding
BOINC project and all ready applications. As can be ob-
served, only two tasks can be executed concurrently, hence
up to two client devices can work simultaneously. Table I
shows the overall micro-benchmark execution times using
1-d vectors with 1,000 and 10,000 elements, respectively,
divided into the following parts: (a) input-data uploading
to client devices, (b) vector processing, (c) output-result
transmission to server, and (d) work on server for task
management. In this case, mCluster introduces a small
time overhead on the server work of approximately 3.2%
and 3.6% when using 1,000- and 10,000-element vectors,
respectively. Finally, the actual execution time attributes to
32% and 48% of the overall elapsed time.

Inferior-Olive application evaluation: Figure 5 pro-
vides the Inferior-Olive annotated pseudocode. Within each
iteration of the simSteps-bounded for-loop, the code tra-
verses the 2-d grid and calculates concurrently each neu-
ron’s computational state, by calling the cellTask task. For
each neuron, cellTask requires the following arguments: an
input struct (60 bytes) that provides the current state of
its neighbours, and three output floats (12 bytes in total)

//cell task
void cellTask (cellCompParams *cellCompParams,
float *newVDent, float *newVSoma, float *newVAxon) {

//dendrite calculations function
CompDend (cellCompParams,newVDent);
//soma calculations function
CompSoma (cellCompParams,newVSoma);
//axon calculations function
CompAxon (cellCompParams,newVAxon);

}
int main () {

//variables declaration
..
//variables initialization
..
for (i=0;i<simSteps;i++){

//Compute one sim step for all cells
for (j=0;j<CELL_NETWORK_DIM_X;j++) {

for (k=0;k<CELL_NETWORK_DIM_Y;k++) {
idx = i*CELL_NETWORK_DIM_X*CELL_NETWORK_DIM_Y
+ (j*CELL_NETWORK_DIM_X + k);
//get neighbors’ voltage influence
..

#pragma mcluster input (struct &cellCompParamsPtr[idx],1)
output (float &vDent[idx],1,float &vSoma[idx],1,float &vAxon[idx],1)

cellTask(&cellCompParamsPtr[idx],&vDent[idx],
&vSoma[idx],&vAxon[idx];

}
}
//wait until all cells for this task
//are calculated
mClusterSync();

}
return 0;

}

Figure 5: Annotation of the Inferior-Olive application with
the mCluster pragma keywords.

Table I: Execution time of the synthetic micro-benchmark.

task processing vectors with 1,000 elements
upload download processing server work TOTAL
1 sec 1 sec 1 sec 0.1 sec 3.1 sec

task processing vectors with 10,000 elements
upload download processing server work TOTAL
1 sec 1 sec 2 sec 0.15 sec 4.15 sec

that designate its next dendrite, soma and axon states.
Consequently, the original code requires only the #pragma
annotations of the cellTask task shown in Figure 5.

To suspend further application execution until all neuron
states have been calculated for a particular simulation step,
we insert the mClusterSync() function. The latter imple-
ments a barrier that checks if all currently dispatched tasks
have finished their execution. mCluster pauses further task
generation until all active ones return their results, thus
ensuring a correct application behavior.

To evaluate the application on a real environment, we
have executed it on the experimental setup described above.
Figure 6 provides the average simStep execution time for
96, 192, 288 and 384 cell grid sizes, divided into the
following segments: server work, download task data, task
execution, and upload task results.

The server work segment represents an average 13%
overhead introduced by (a) the mCluster framework that
creates / deletes the required BOINC applications associated

Table II: Platform comparison table

platform max. cell # simStep exec. time cost
FPGA Virtex-7 [9] ≤ 14,400 6.4 msec $3,500
Maxeler Maia [10] ≤ 7,840 0.04 msec >$25,000

mCluster (10k nodes) 1,000,000* [7.26 sec – 2,578.80 hr] $0**
* No real upper limit exists for mCluster; human-sized Inferior Olive selected here

for comparison purposes.
** A small cost may be applied, in case mCluster is hosted to a dedicated server

machine instead of a VM.

0

250

500

96 192 288 384

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

neurons grid size

server work download task data task execution upload task results

Figure 6: Average simStep execution time of the Inferior-
Olive application on all client devices.

with the original tasks, and (b) run the BOINC middleware.
Compared to the previous micro-benchmark, the source-
to-source translated application code in this case is much
larger, hence writing all output files creates an increased
overhead. On average, a 67% of the overall time is spent
on the tasks execution, thus indicating the benefit and need
of having more processing resources available, in order to
reduce the execution time. Finally, approximately 20% of
the time is spent on exchanging data (upload and download)
between the clients and the server.

Discussion: Taking our analysis one step further, we
estimate the processing time needed to model real biological
brains. According to our experiments, an Inferior-Olive task
requires on average 1.46 sec, 0.93 sec and 4.87 sec for data
transfers, server work (create and manage the corresponding
BOINC application) and actual execution on a client de-
vice, respectively. Figure 7 shows the projected processing
time for evaluating a single simStep when simulating the
aforementioned different brain complexities (mouse, cat and
human).

In our analysis, we assume that data transfers and task
processing are equally distributed to all available devices.
As expected, the currently implemented system is bounded
by the capabilities of server machine which hosts the
mCluster framework and orchestrates the overall application
execution. However, this limitation can be easily addressed
by (a) utilizing more powerful server(s), and (b) employing
additional servers to host the mCluster framework. The
latter method is feasible, since the BOINC middleware
server architecture is scalable across different machines [1].

Comparison to other platforms: Volunteer computing-
based processing platforms, work on a ”best-effort” ap-
proach. Processing nodes are unreliable in terms of avail-
ability and connectivity, thus execute tasks only when

10

100

1000

10000

10 100 1000 10000

ex
ec

. t
im

e
(h

)

of utilized devices

human mouse cat

Figure 7: Projected processing time of a single simStep
when simulating different brain types using up to 10,000
portable devices; execution time is lower bounded by the
server work.

certain parameters and circumstances apply, thus can not
compete against high-performance (and dedicated) comput-
ing platforms.

Table II lists two works that have implemented the
Inferior-Olive application in a Xilinx Virtex-7 FPGA plat-
form [9] and a Maxeler Maia Data-Flow-Engine (DFE)
platform [10]. The table reveals that both implementations
can execute a single simStep at least an order of magnitude
faster compared to our system (we include the server-work
and data-transfer overheads). However, [9] and [10] can
process up to 14,400 and 7,840 neurons respectively due
to their limited resources. In contrast, an mCluster-powered
system is only limited by the available portable devices in
terms of processing resources.

In addition, commercial platforms introduce significant
acquisition and maintenance costs. In contrast, mCluster-
powered systems are solidly based on portable devices
owned by external users. Furthermore, as described in the
beginning of this section, mCluster projects can be deployed
even on VMs hosted on already available server machines,
hence not imposing extra setup and maintenance costs.

Integration with related work: As described in Sec-
tion II, the setup overhead of currently available middleware
and their lack of supporting inter-node task dependencies,
still constrain the applicability of volunteer computing.
mCluster targets to bridge this gap, and provide a simple and
powerful programming environment, that will allow scien-
tists from various research domains to discover and utilize
the power of volunteer computing to solve computationally
intensive problems.

The current mCuster implementation utilizes the original
BOINC middleware, however with certain modifications,
it may be bundled with BOINC’s extensions, such as
the VBOINC and vboxwrapper. Such an approach would
combine the benefits of both works, like inter / intra-
node task dependencies support, easy application porting to
different hosting platforms, increased security and system-
level checkpointing. A drawback, though, is that virtualiza-
tion layers introduce performance overheads, and allocate a
significant amount of storage and memory resources, hence
cannot be executed on low-end hosting platforms (such as

smartphones and tablets), which are the ”processing heart”

of volunteer computing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the mCluster framework that
offers a simple -yet powerful- framework for BOINC-
powered application execution on clusters of portable de-
vices. As future work, we would like to focus on (a)
integrate advanced scheduling policies for improved tasks
scheduling on such unreliable (in terms of connectivity, and
availability) distributed processing networks, (b) support
the virtualized extensions of BOINC in order to improve
application portability, security and support system-level
checkpointing, and (c) make available to the public our
Inferior-Olive application project, so users worldwide can
actively contribute to biologically accurate brain simulation.

ACKNOWLEDGMENT

This work has been supported by the 2007 - 2013
National Strategic Reference Framework (NSRF) of the
General Secretariat for Investments and Development /
Greek Ministry of Economy and Finance, under the the-
matic session “Competitiveness and Entrepreneurship and
Regional Operational Programme of the Regions in transi-
tional support” (project #1592).

REFERENCES

[1] David P. Anderson, et. al., “High-Performance Task Distribu-
tion for Volunteer Computing,” in International Conference
on e-Science and Grid Computing, 2005, pp. 196–203.

[2] Gary A. McGilvary, et. al., “V-BOINC: The Virtualization of
BOINC,” in IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, May 2013, pp. 285–293.

[3] Douglas Thain, et. al., “Distributed Computing in Practice:
The Condor Experience,” in Concurrency and Computation:
Practice and Experience, vol. 17, February 2005, pp. 323–
356.

[4] Diogo Ferreira, et. al., “ibboincexec: A generic virtualization
approach for the BOINC middleware,” in International Sym-
posium on Parallel and Distributed Processing Workshops
and PhD Forum, May 2011, p. 1903–1908.

[5] Daniel Lombrana Gonzalez, et. al., “Interpreted applications
within BOINC infrastructure,” in Iberian Grid Infrastructure
Conference Proceedings, May 2008, p. 261–272.

[6] Ben Segal, et. al., “LHC cloud computing with CernVM,”
in International Workshop on Advanced Computing and
Analysis Techniques in Physics Research, February 2010.

[7] Attila Csaba Marosi, et. al., “Enabling Java applications for
BOINC with DC-API,” in Distributed and Parallel Systems,
In Focus: Desktop Grid Computing ISBN: 978-0-387-79447-
1, Springer Science+Business Media, LLC, 2008, pp. 3–12.

[8] Jornt R. De Gruijl, et. al., “Climbing Fiber Burst Size and
Olivary Sub-threshold Oscillations in a Network Setting,” in
PLoS Computational Biology, vol. 8, December 2012.

[9] Georgios Smaragdos, et. al., “FPGA-based Biophysically-
Meaningful Modeling of Olivocerebellar Neurons,” in 22nd
ACM/SIGDA Int. Symposium on FPGAs (FPGA), February
2014, pp. 89–98.

[10] ——, “Real-Time Olivary Neuron Simulations on Dataflow
Computing Machines,” in Int’l Supercomputing Conference
(ISC), June 2014, pp. 487–497.

