
On Using a Von Neumann Extractor in
Heart-Beat-Based Security

Robert M. Seepers1, Christos Strydis1, Ioannis Sourdis2, and Chris I. De Zeeuw1

1Dept. of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
2Dept. of Computer Science & Engineering, Chalmers University of Technology, Gothenburg, Sweden

1{r.seepers, c.strydis, c.dezeeuw}@erasmusmc.nl 2sourdis@chalmers.se

Abstract—The Inter-Pulse-Interval (IPI) of heart beats has
previously been suggested for facilitating security in mobile health
(mHealth) applications. In heart-beat-based security, a security
key is derived from the time difference between consecutive
heart beats. As two entities that simultaneously sample the
same heart beats may generate the same key (with some inter-
key disparity), these keys may be used for various security
functions, such as entity authentication or data confidentiality.
One of the key limitations in heart-beat-based security is the
low randomness intrinsic to the most-significant bits (MSBs)
in the digital representation of each IPI. In this paper, we
explore the use of a von Neumann entropy extractor on these
MSBs in order to increase their randomness. We show that our
von Neumann key-generator produces significantly more random
bits than a non-extracting key generator with an average bit-
extraction rate between 13.4% and 21.9%. Despite this increase
in randomness, we also find a substantial increase in inter-key
disparity, increasing the mismatch tolerance required for a given
true-key pair. Accordingly, the maximum-attainable effective key-
strength of our key generator is only slightly higher than that
of a non-extracting generator (16.4 bits compared to 15.2 bits of
security for a 60-bit key), while the former requires an increase
in average key-generation time of 2.5x.

I. INTRODUCTION

Heart-beat-based security (HBBS) has emerged as a
method for facilitating security in mobile health (mHealth)
applications such as Body-Area Networks (BANs) or Im-
plantable Medical Devices (IMDs) [7], [9], [12]. In HBBS,
security keys are generated from the time difference (Inter-
Pulse-Interval, IPI) between consecutive heart beats. Previous
work has revealed that each IPI contains a certain degree of
entropy and is measurable with some consistency throughout
the same human body. Two entities which simultaneously
sample the same heart beats may, thus, use the IPI for various
security functions such as key agreement [15], BAN-device
pairing [1], [7], [18] or IMD (-emergency) authentication [9],
[12].

As with all biometrics, the measurements taken by two
different entities tend to have some disparity between them
due to inter-sensor variability (VARis). An exact key match is,
thus, not likely to occur and some tolerance to this inter-key
disparity is required. Effectively, this entails that the security
strength of IPI-based keys depends on both the randomness
of the IPI-bits selected for key-generation, as well as the
allowed disparity between these keys [13]. Previous work
has shown that the least-significant bits (LSBs) in the digital
representation of IPIs are essentially random, yet are not usable
for key generation due to a high VARis. Conversely, the most

significant bits (MSBs) are easier to reproduce by both entities,
yet are not random enough for security-key generation due to
a high degree of inter-IPI correlation [13].

In this paper, we propose a novel von Neumann (vN) key-
generator, which applies a von Neumann entropy extractor [16]
on the MSBs of each IPI. The vN extractor produces a bit
only when its input (the MSBs) changes value, allowing us
to bypass the long sequences of identical values observed
in the MSBs [13], yielding bits with increased randomness.
By increasing this randomness, it may become possible to
use these MSBs for key-generation, potentially leading to
the production of stronger keys and a reduction in the key-
generation time. Our vN key-generator is evaluated in terms of
1) the minimum entropy of generated keys; 2) the worst-case
disparity between keys obtained by multiple entities; 3) the
effective key strength; and 4) the key-generation time. To the
best of our knowledge, this is the first work which proposes
and evaluates the use of an entropy extractor in heart-beat-
based security.

The rest of this paper is structured as follows: First, we
discuss established work related to heart-beat-based security in
Section II, after which we describe the most commonly used
(non-extracting) IPI-based key-generator and our proposed vN
key-generator in Section III. We evaluate these key-generators
at length in Section IV, after which concluding remarks are
given in Section V.

II. RELATED WORK

In this Section, we consider related works which address
the strength of IPI-based keys in heart-beat-based security. This
key strength depends on both the entropy per IPI and the inter-
key disparity allowed for a true-key pair, as will be discussed
in Section IV-A1. Accordingly, we first discuss relevant studies
on the IPI entropy, after which we review a number of related
works on the inter-key disparity.

Various studies have evaluated the entropy per IPI (in
this work considered to be represented as an 8-bit value) of
healthy subjects, hypertensive subjects as well as patients with
cardio-vascular disorders (CVDs) [9], [13], [19], all of which
conclude that the four least-significant bits (LSBs) of each IPI
contain a high degree of entropy. The most significant bits
(MSBs), on the other hand, show a substantial reduction in
entropy, mostly due to a large correlation between consecutive
IPIs [13]. In an attempt to increase the entropy obtained
from IPIs, Bao et al. [1] have proposed using the multi-Inter-
Pulse Interval (mIPI) for key generation, where mIPI(i,j) is



V
o
lt
ag
e

Time

1 0 0 1 0 1 1 0

1 1 1 0 0 1 0 1

1 0 0 1 0 0 1 1

1 1 0 1 1 0 0 0

IPI(1,2)

IPI(2,3)

IPI(3,4)

IPI(4,5)

IPI12

MSB

Ks 010 011 001 110

Gray
coding

1 2 3 4 5

LSB

Fig. 1: Baseline (non-extracting) key-generator for generating
a security key in heart-beat-based security.

the accumulation of all IPIs previously considered for key

generation, i.e., mIPI(i,j) =
j−1∑
i=1

IPI(i,i+1); j > i. While

our own experiments confirm the apparent increase in entropy
resulting from the use of mIPI , we note that it does not
enhance security. The mIPI attempts to increase randomness
using a simple addition and, as famously stated by John von
Neumann, “any one who considers arithmetical methods to
produce random digits is, of course, in a state of sin” [16].
Contrary to the mIPI, our proposed key-generator uses a von
Neumann extractor [16] which does increase the entropy of the
generated keys, albeit at the cost of increased key-generation
time and inter-key disparity.

The inter-key disparity allowed for a true-key pair (ex-
pressed as the Hamming-distance threshold between the pair
value, THD) depends on both the inter-sensor variability
VARis between two entities and the targeted true-key-pair
matching rate. While all studies on the subject agree that THD

reduces the strength of IPI-based keys, several methodologies
have been followed to model VARis, resulting in a discrepancy
across reported results [10]. Zhang et al. [19] have overlooked
the issue of VARis, while Chang et al. [2] and Rostami et
al. [9] have modeled it as two different leads of the same
ECG (Electrocardiogram), all of which result in a minor
disparity for a true-key pair. Poon et al. [7] and Bao et al. [1]
model VARis as the difference between an ECG and PPG
(Photoplethysmography), showing a significant dissimilarity
between generated keys (a 2.06% false-rejection rate has been
described for a 128-bit key using THD = 48 bits). Another
study has shown a similar disparity (describing a best-case
THD = 16 bits for a 60-bit key) by considering VARis as the
difference between ECG and blood-pressure recordings [13].
It is clear from these studies that a substantial VARis (and,
thus, THD) may be expected when different cardiac signals
are measured simultaneously. However, we consider such a
model representative for typical mHealth applications, such
as a BAN, where sensors are very likely placed at different
locations on the same body and measure various cardiac
signals. Accordingly, we adopt the model for VARis described
in [13].

1 0 0 1 0 1 1 0

1 1 1 0 0 1 0 1

1 0 0 1 0 0 1 1

1 1 0 1 1 0 0 0

IPI(1,2)

IPI(2,3)

IPI(3,4)

IPI(4,5) Ks 010 011 001 110  000110

LSB
Ext 
vN

Ext 
vN

Ext 
vN

Ext 
vN

Fig. 2: Proposed von Neumann (vN) key-generator which
applies a vN extractor (Ext vN) to each of the 4 MSBs. Gray
coding is still applied to the key-bit selection (prior to bit-
extraction) but not depicted for simplicity.

III. KEY GENERATION WITH VON NEUMANN EXTRACTOR

In this Section, we describe the most commonly used
(baseline) key generator in heart-beat-based security, after
which we discuss the von Neumann (vN) extractor and its
application in our vN key-generator.

Figure 1 illustrates the most commonly used method of
security-key generation in heart-beat-based security [1], [7],
[9], [13], [19]. First, each entity detects a number of heart
beats from their cardiac biosignals and calculates the time
interval (IPI, in this work considered as an 8-bit value) from
consecutive beats, i.e., IPI(i,i+1) = beati+1 − beati. From
these IPIs, a predefined set of bits m is selected (the key-
bit selection) to form a key segment: the most-significant
bits (MSBs) are discarded due to their inherent low entropy,
while LSBs may be discarded due to inter-sensor variability1

(VARis). Gray coding is applied to the key segment in order
to strengthen it against VARis (reducing the number of bits
affected by a small disparity between IPIs), after which n key
segments are concatenated to form security key k. It is com-
monly (and in this work) assumed that k cannot be obtained by
a remote adversary, allowing it to be used for various security
functions. A prominent example is entity authentication, where
the keys are used as entity identifiers and authentication is
successful if the identifiers are similar enough, i.e., if the
disparity (Hamming distance) between the keys is smaller than
a predefined threshold (hd(k1 ⊕ k2) < THD, where hd(x)
represents the number of non-zero values in x).

By extending this baseline key-generator through applying
a vN extractor on the MSBs, we hope to achieve an increase
in key strength or a reduction in key-generation time, as more
(random) bits are obtained per IPI. The vN extractor is a
function which takes as input two bits, x0 and x1, and produces
an output bit xout = x0 iff x0 6= x1; else, x0 and x1 are both
discarded. As long as the probability P(x0 = 1, x1 = 0) =
P(x0 = 0, x1 = 1), this results in the production of quasi-
random bits [11] regardless of the probability P (xi = 0)
and P (xi = 1) as the inputs (x0, x1) ⊆ {(0, 0), (1, 1)} are
discarded [16]. The extractor may be applied to any input xs
containing an even number of bits: In this case, xs is first split
into xs/2 bit pairs after which extraction is applied to each
pair. For example, the input xs = 00000100 is split into bit

1Assuming precise and non-drifting sensors, VARis is the variance between
two different sensor measurements of cardiac biosignals, caused by the
variable pulse-transition time of ventricular contraction (heart beats) to the
rest of the body due to, for example, motion and pressure differences.



pairs 00|00|01|00, resulting in a single bit 0 being extracted
from the third pair.

We consider the vN extractor an excellent solution to
increase the entropy of the MSBs. Previous work has shown
that MSBs suffer from significant correlations across multiple
IPIs (inter-IPI correlations) [13], [19]. As the vN extractor only
extracts a bit when the value of its input changes, we may
increase the randomness of these bits by bypassing the long
sequences of identical values observed in them. Moreover, the
vN extractor is realized using a single XOR operation, making
it suitable for low-power devices such as IMDs. Figure 2
depicts our proposed vN key-generator, where a vN extractor
is applied to each of the MSBs. In this arrangement, each
extractor obtains an input stream xs by taking bits from
consecutive IPIs in the same bit-position, for example, bit 5
from IPI(1,2) and IPI(2,3). The extracted bits (from the different
extractors) are subsequently concatenated to form an additional
key segment which is appended to security key k, similar to
the baseline (non-extracting) key-generator. This additional key
segment increases the number of bits obtained per IPI (18 bits
are obtained from 4 IPIs in the example of Figure 2, compared
to 12 bits for the baseline in Figure 1), allowing for a decrease
in key-generation time.

IV. EVALUATION

In this Section, we evaluate and compare the performance
of our vN key-generator to that a non-extracting (baseline) key
generator in terms of key entropy, inter-key disparity, effective
key strength and key-generation time. First, we describe our
experimental setup, consisting of our evaluation criteria and
considered datasets in Section IV-A1, after which the results
of our evaluation will be discussed at length in Section IV-B.

A. Experimental Setup

In this Section, we describe our experimental setup for
evaluating the baseline and vN key-generators. First, we intro-
duce the effective key strength KSeff as a figure of merit, as
well as its acquisition through measuring the key entropy Hk

and the tolerated disparity for a true-key pair THD. Afterwards,
we present the datasets considered in our evaluation.

1) Key Strength: The strength of a key is determined by
how hard it is for an attacker to guess it. To quantify the key
strength in bits, we define the effective key strength KSeff

as the number of entropic bits which should be known to an
attacker in order to successfully authenticate to the IMD with
probability Pauth = 0.5 [13]. That is, an attacker would
have to mount on average 2KSeff attacks. To exemplify, in
Figure 3 we plot a distribution of Hamming distances between
an authentication key and various, randomly selected attacker
keys. This distribution X – x being the number of mismatched
bits in an n-bit key – is expectedly binomial with an average
number of mismatches E(X) = p0 · Hk = p1 · Hk = Hk

2 ,
where p0 and p1 denote the probability of a bit being zero or
one (for entropic bits, p0 = p1 = 1

2 ) and Hk denotes the
number of entropic bits in the key (ideally, Hk = n). Since,
on average, half the number of entropic bits are mismatched
by simply guessing, for successful authentication an attacker
would need to try up to:

KS = 2 · E(X)− 1 = Hk − 1 bits,

0

4

8

12

1 11 21 31 41 51

ke
ys

 (
%

)

Hamming distance (bit)

E(X) = ½Hk

E'(X)

THD

Fig. 3: Key strength KSeff as a function of Hk and THD.

the ”-1” term accounting for Pauth = 0.5.

As it is unlikely that keys will be a perfect match due to
VARis, we allow entities to authenticate if their keys differ
no more than THD bits, where THD denotes the Hamming-
distance threshold. As a result, the average number of mis-
matched bits will be effectively reduced by the amount of
”don’t care” THD bits; essentially E′(X) = Hk

2 − THD

(see Figure 3). In this more general case, KSeff is calculated
as follows:

KSeff = 2 · E′(X)− 1

= Hk − 2 · THD − 1 bits. (1)

Note that KSeff may now assume negative values, signi-
fying that an attacker would require less than one attack on
average to guess the key (2KSeff < 1). Obviously, a negative
KSeff will never exist in practical applications as an attacker
would always require at least one attack, i.e., KSeff would
be greater or equal to zero. Nevertheless, considering KSeff

as a potentially negative value allows us to investigate exactly
how far the generated keys are from providing any form of
security (KSeff > 0).

To determine KSeff we, thus, have to evaluate the en-
tropy Hk and required Hamming-distance threshold THD, the
acquisition of which is described next.

2) Entropy: The upper limit Hk of the effective key
strength is determined by the randomness of the key-bit
selection (the bits selected per IPI) for key generation. As a
first-order estimation of this randomness, we use an arithmetic
mean, autocorrelation and compression test over the generated
keys (an extension over the tests in the ENT randomness test
suite [17] used in [13]), varying the bits selected for key
generation.

• The arithmetic-mean test evaluates the average prob-
ability of a particular key-bit being one or zero, i.e.,
(P(xi = 0), P(xi = 1)) and, thus, represents the random-
ness when a bit is sampled from a key. This test reveals
a bias in the key bits if P (xi = 0) 6= P (xi = 1);

• The autocorrelation test determines the probability of
a key-bit being identical to its lth neighboring bit, i.e.,
P (xi = xi−l), where we choose l = 1, 2, 3, ..., 20
to determine if there are any intra-key correlations.
A high value for P (xi = xi−l) indicates repetitive
patterns in consecutive IPIs, yielding a reduction in
entropy (and security) as the bits in IPI(i,i+1) have
predictive value over those in IPI(i+l,i+1+l).



• The compression test splits the generated keys into
c-sized symbols S and evaluates the frequency of
each symbol occuring, i.e., P (s) =

∑
S=s∑
S , where

s = 1, 2, 3, ..., 2c, S is the value of c consecutive
bits and we choose c = 1, 2, 3, ..., 8. A high value
for P (s) indicates that certain symbols (bit-patterns)
s occur more frequently throughout the distribution,
indicating correlations between consecutive IPIs.

Based on the probabilities calculated using our tests, we
may compute the Shannon entropy for the arithmetic mean
(Ham), autocorrelation (Hac) and compression (Hc) tests
as [14]:

H =
∑
i

pi log2 pi (2)

where pi is the probability of a particular event, for example,
the probability of a given symbol s in the compression test.
As a conservative estimation, we define the minimum entropy
Hmin = min(Ham, Hac, Hc). It is shown later on (in Table II)
that Hmin may frequently not equal its maximum value of 1,
i.e., the bits in the key are not fully entropic (p0 6= p1 6= 0.5,
where p0 and p1 denote the probability of a bit being 0 or
1, respectively). In such cases, it is not possible to simply
evaluate the randomness of the key Hk by multiplying Hmin

by the number of bits in the key due to the logarithmic nature
of Hmin. For example, a single bit with Hmin = 1 has
probabilities p0 = p1 = 0.5, which is clearly more random
than two bits with Hmin = 0.5 each (having p0 = 0.89, p1
= 0.11). To calculate the equivalent entropy of such low-
entropic bits, what needs to be done is for a sufficient number
of bits neq to be put together so as to result in a fully
entropic symbol S with symbol entropy HS = 1, i.e. it will
hold that pS = pS = 1

2 . To construct S, we first obtain
p0 and p1 from Equation (2), where we set i = 0, 1 and
H = Hmin. By concatenating neq of these bits, we obtain
pS = 1

2 = pmax
neq where pmax = max(p0, p1)

2, allowing
us to solve for neq = logpmax( 12 ). As each symbol S of length
neq bits provides randomness equivalent to 1 fully entropic bit,
each bit shall have equivalent entropy Heq = 1

neq
. Based on

calculating this equivalent entropy for all i individual IPI-bit
positions (Hi

eq), the entropy of the key-bit selection m may
be obtained3 from Hm

eq =
∑
i

Hi
eq for all i ε m. Finally,

as n key-segments are combined to form key k, we obtain
Hk = Hm

eq · n.

3) Hamming-Distance Threshold: The allowed inter-key
disparity THD is determined by both the inter-key disparity
VARis and the desired probability of key-matching. Lowering
THD allows for an increase in KSeff (as an attacker’s key
is required to be more similar to the actual key), yet also
reduces the chance of successful matching for a true-key
pair. To determine THD, we calculate the Hamming distance

2Given that p0 = 1 − p1, a maximum operator is used so as to get the
highest probability between p0 and p1. This is the only way that, when
concatenating multiple bits n, we can get a combined probability pn

0|1 = 0.5.
3In this work, we have not found any intra-IPI dependencies (between IPI

bits), permitting Hm
eq to be calculated as a linear addition of the Hi

eq of the
selected IPI-bits [13].

TABLE I: Average bit-error rate due to VARis.

Bit # 0 1 2 3 4 5 6 7
Error rate 0.46 0.29 0.15 0.08 0.04 0.02 0.01 0.00

TABLE II: Entropy-test results for individual IPI-bit positions
using the baseline key-generator.

Bit Ham Hac Hc Hmin Heq

0 1.00 1.00 1.00 1.00 0.92
1 1.00 1.00 1.00 1.00 0.92
2 1.00 1.00 1.00 1.00 0.92
3 1.00 1.00 1.00 1.00 0.92
4 1.00 0.99 0.98 0.98 0.78
5 1.00 0.91 0.89 0.89 0.52
6 1.00 0.81 0.77 0.77 0.36
7 1.00 0.67 0.60 0.60 0.23

between true-key pairs generated by two entities and see with
what threshold THD the keys would match reliably, where
reliable is defined as successful matching with probability
Pmatch = 1−10−6 within a predefined, upper time limit [13].
Without loss of generality, in this work we set the time
limit of key generation to 60 seconds. We expect that such a
matching criterion will be practically feasible for some of the
most safety-critical applications of heart-beat-based security,
such as providing IMD-emergency authentication [9], [12]. We
evaluate our generator for a 60-bit key as it is allows us to
easily assess the effective key strength under our authentication
constraints (assuming an average human-heart rate of 60 beats-
per-minute), as has been done in prior work [13].

4) Used Datasets: Our experiments are based on the ECG-
recordings in the MIT-BIH arrhythmia dataset, a commonly
used dataset in the field which contains the ECG recordings
of subjects with a wide variety of CVDs [3], [6]. This dataset
contains half-hour recordings of 48 subjects, providing us with
85k IPIs after the exclusion of signal artifacts. We model the
inter-sensor variability VARis through the difference between
ECG and blood-pressure recordings as described in Section II
and in [12], [13]. That is, a second recording is created by
adding VARis obtained from the Fantasia dataset [4] to the
ECG recordings from the first ECG-lead of the MIT-BIH
arrhythmia dataset. To indicate the (average) disparity we may
expect due to VARis, we summarize the average bit-error rates
for this model in Table I. Note that the disparity is quite
severe for the least-significant bit positions (46% and 29%
of all bits are expected to mismatch for bit positions 0 and 1,
respectively) and decreases exponentially for more significant
bits.

B. Experimental Results

In this Section, we evaluate the non-extracting (baseline)
and extracting (vN) key-generator in terms of: 1) Entropy of
the generated keys Hk; 2) Required tolerance to inter-key
disparity for a true-key pair THD; 3) Effective key strength
KSeff ; and 4) Key-generation time.

1) Entropy: To evaluate the entropy for the generated
keys using the baseline and vN key-generator, we first assess
the minimum entropy per-bit Hmin after which we discuss
the resulting key-entropy Hk for both generators. In order
to understand the characteristics of the randomness available



7 .96 .95 .89 .85 .78 .71 .67 .60

6 .98 .95 .93 .90 .84 .79 .77

5 .99 .98 .96 .95 .91 .89

4 1.0 .99 .99 .99 .98

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

7 1.0 1.0 1.0 .99 .99 .99 .96 .91

6 1.0 1.0 1.0 .99 .99 .98 .96

5 1.0 1.0 1.0 .99 .99 .98

4 1.0 1.0 .99 .99 .99

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

1.0

0.6

Without ext        with ext

1.0

0.6

7 42 39 32 28 23 19 17 14

6 46 41 37 32 27 23 22

5 49 47 43 40 34 31

4 56 53 52 50 47

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

7 56 55 53 52 51 48 42 34

6 56 56 53 52 51 48 41

5 56 55 53 52 51 46

4 56 55 53 51 49

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

60

0

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

60

0

(a) Hmin baseline

7 .96 .95 .89 .85 .78 .71 .67 .60

6 .98 .95 .93 .90 .84 .79 .77

5 .99 .98 .96 .95 .91 .89

4 1.0 .99 .99 .99 .98

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

7 1.0 1.0 1.0 .99 .99 .99 .96 .91

6 1.0 1.0 1.0 .99 .99 .98 .96

5 1.0 1.0 1.0 .99 .99 .98

4 1.0 1.0 .99 .99 .99

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

1.0

0.6

Without ext        with ext

1.0

0.6

7 42 39 32 28 23 19 17 14

6 46 41 37 32 27 23 22

5 49 47 43 40 34 31

4 56 53 52 50 47

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

7 56 55 53 52 51 48 42 34

6 56 56 53 52 51 48 41

5 56 55 53 52 51 46

4 56 55 53 51 49

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

60

0

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

60

0

(b) Hmin vN

7 .96 .95 .89 .85 .78 .71 .67 .60

6 .98 .95 .93 .90 .84 .79 .77

5 .99 .98 .96 .95 .91 .89

4 1.0 .99 .99 .99 .98

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

7 1.0 1.0 1.0 .99 .99 .99 .96 .91

6 1.0 1.0 1.0 .99 .99 .98 .96

5 1.0 1.0 1.0 .99 .99 .98

4 1.0 1.0 .99 .99 .99

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

1.0

0.6

Without ext        with ext

1.0

0.6

7 42 39 32 28 23 19 17 14

6 46 41 37 32 27 23 22

5 49 47 43 40 34 31

4 56 53 52 50 47

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

7 56 55 53 52 51 48 42 34

6 56 56 53 52 51 48 41

5 56 55 53 52 51 46

4 56 55 53 51 49

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

60

0

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

60

0

(c) Hk baseline

7 .96 .95 .89 .85 .78 .71 .67 .60

6 .98 .95 .93 .90 .84 .79 .77

5 .99 .98 .96 .95 .91 .89

4 1.0 .99 .99 .99 .98

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

7 1.0 1.0 1.0 .99 .99 .99 .96 .91

6 1.0 1.0 1.0 .99 .99 .98 .96

5 1.0 1.0 1.0 .99 .99 .98

4 1.0 1.0 .99 .99 .99

3 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0

1 1.0 1.0

0 1.0

0 1 2 3 4 5 6 7

1.0

0.6

Without ext        with ext

1.0

0.6

7 42 39 32 28 23 19 17 14

6 46 41 37 32 27 23 22

5 49 47 43 40 34 31

4 56 53 52 50 47

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

7 56 55 53 52 51 48 42 34

6 56 56 53 52 51 48 41

5 56 55 53 52 51 46

4 56 55 53 51 49

3 58 57 57 55

2 57 57 55

1 57 55

0 55

0 1 2 3 4 5 6 7

60

0

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

LSKB

M
SK

B

60

0

(d) Hk vN

Fig. 4: Entropy results for the baseline and vN key-generator.
Depicted are: (a) and (b): Minimum-entropy per bit Hmin

results for the baseline and vN key-generator, respectively; (c)
and (d): Entropy for a 60-bit key Hk using the baseline and
vN key-generator, respectively.

in each IPI, let us first consider the situation where only
one bit is selected per IPI for the baseline key-generator.
Table II presents the entropy results for the individual tests
in Section IV-A2, Ham, Hac and Hc and the resulting min-
entropy Hmin. In line with related work, we see that the
four least-significant bit (LSB) positions of each IPI contain
a high degree of entropy, scoring between 0.99 and 1.00
for all tests. From bit position 4 onwards, we find that the
entropy results are gradually decreasing: while Ham appears
unaffected, we see a substantial decrease in Hac and Hc. These
most-significant bits (MSBs), thus, do not show a particular
bias, yet show significant correlations between consecutive IPIs
(the minimum value for Hi

ac and Hi
c were obtained using

test parameters l = 1 and c = 8, respectively), effectively
reducing entropy. Table II also presents the equivalent entropy
per bit Heq for the various IPI-bit positions. Note that even
though Hmin is considerably high for several bit positions
(1.00), Heq is substantially lower with a maximum value of
0.92: Due to the logarithmic scale onto which entropy Hmin

is defined, even a small difference between the maximum-
attainable entropy (Hmin = 1) and the actual measured Hmin

results in a significant reduction in Heq .

Let us now consider key generation using more than
one bit per IPI. Figure 4 presents Hmin for both the
baseline (a) and vN (b) key-generator; The y-axis shows
the least-significant IPI-bit used for key-generation (least-
significant key-bit, LSKB) while the x-axis shows the most-
significant IPI-bit used for key-generation (most-significant
key-bit, MSKB). For example, the Hmin results for a key-
bit selection including bits 3-5 are presented for the values
(LSKB = 3, MSKB = 5). Note that the diagonal of

Figure 4a equals the results presented in Table II. For the
baseline key-generator, it is evident that using fewer LSBs (i.e.,
increasing LSKB) or using more MSBs (increasing MSKB)
yields a (substantial) reduction in Hmin, down to 0.6 for
(LSKB = 7, MSKB = 7).

By applying the vN extractor to the MSBs (Figure 4b), we
observe that the Hmin of the MSBs is substantially increased.
For example, we find a value for Hmin between 0.99 and
1.00 for any key-bit selection when LSKB < 5 (regardless
of MSKB), considerably higher than the Hmin value for
the baseline key-generator using the same key-bit selection
(which may be as low as 0.78). Despite this observed increase
in entropy, we do find that Hmin is gradually decreased by
including more MSBs in the key-bit selection, down to 0.91 for
IPI-bit position 7 (LSKB = 7, MSKB = 7). We observe this
decrease in both Hac and Hc, indicating that the bits produced
by the vN extractor still show some correlations. Upon inspec-
tion, we find that this correlation is due to anticorrelation in
a subset of input IPIs. That is, a periodic alternation between
1’s and 0’s is observed in consecutive IPIs, causing the vN
extractor to produce a sequence of bits of the same value. Even
though this anticorrelation exists, we still obtain a substantial
increase in Hmin compared to the baseline.

Based on Hmin, we may now calculate the key entropy Hk

as presented in Figure 4c and 4d for a 60-bit key. Limiting
the key-bit selection to the four LSBs only (LSKB < 4,
MSKB < 4), we observe a value for Hk between 55 and 58
bits for both generators (close to the maximum Hk = 60 bits for
our 60-bit key), again demonstrating the high randomness of
these IPI bits. When MSBs are included in the key-bit selection
(MSKB ≥ 4) and, thus, entropy extraction is applied, we find
that the vN key-generator consistenly produces more random
keys than the baseline. This increase in Hk is most apparent
when all the MSBs are included in the key-bit selection
(LSKB ≥ 0, MSKB = 7): For the baseline, this results
in a value for Hk between 42 to 14 bits, compared to 56 and
34 bits for the vN key-generator, i.e., an increase in Hk of up
to 2.5x is observed.

2) Hamming-Distance Threshold: Following up on equa-
tion 1, we discuss next the Hamming-distance threshold THD

as a function of the bits selected per IPI, the results of which
are depicted in Figure 5. First, Figure 5a illustrates the trade-off
between THD (x-axis) and the desired true-key-pair matching
rate Pmatch (y-axis) when selecting IPI-bit position 3 only
(LSKB = 3, MSKB = 3). It is shown that Pmatch rapidly
increases as a function of THD up to Pmatch = 0.99 (THD = 18
bits), after which a significant increase in THD is required to
further increase Pmatch. For the true-key-pair matching rate
targeted in this work (Pmatch = 1 − 10−6), this results in
THD = 24 bits. Recall from Section IV-A1 that the effective
key strength KSeff = Hk − 2 · THD − 1: That is to say,
requiring a high Pmatch impedes a high KSeff .

Figure 5b depicts THD for the baseline key-generator for
our target Pmatch. It is clear that the LSBs of each IPI are
substantially affected by VARis: When a key-bit selection
is made from any of the first three LSBs (LSKB ≤ 2,
MSKB ≤ 2), we find a high THD between 37 and 49 bits.
Since the MSBs are less susceptible to VARis (see Table I), we
observe a decrease in THD both when more MSBs are added to
the key-bit selection (increasing MSKB) and when removing



7 21 17 11 9 7 7 9 17

6 23 16 15 11 8 9 17

5 25 21 16 12 9 17

4 27 24 18 19 17

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

LSKB

7 31 26 24 27 38 38 42 39

6 31 27 23 25 39 42 40

5 31 27 23 21 41 37

4 30 27 23 19 42

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B

7 31 26 21 19 23 22 22 22

6 31 27 21 19 23 22 22

5 31 27 23 18 23 22

4 30 27 21 17 26

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B30+

0

LSKB

LSKB

M
SK

B

P
m
at
ch

THD
0 60

0

1

30+

0

30+

0

18 24

(a) Trade-off THD and Pmatch

7 21 17 11 9 7 7 9 17

6 23 16 15 11 8 9 17

5 25 21 16 12 9 17

4 27 24 18 19 17

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

LSKB

7 31 26 24 27 38 38 42 39

6 31 27 23 25 39 42 40

5 31 27 23 21 41 37

4 30 27 23 19 42

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B

7 31 26 21 19 23 22 22 22

6 31 27 21 19 23 22 22

5 31 27 23 18 23 22

4 30 27 21 17 26

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B30+

0

LSKB

LSKB

M
SK

B

P
m
at
ch

THD
0 60

0

1

30+

0

30+

0

18 24

(b) THD baseline

7 21 17 11 9 7 7 9 17

6 23 16 15 11 8 9 17

5 25 21 16 12 9 17

4 27 24 18 19 17

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

LSKB

7 31 26 24 27 38 38 42 39

6 31 27 23 25 39 42 40

5 31 27 23 21 41 37

4 30 27 23 19 42

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B

7 31 26 21 19 23 22 22 22

6 31 27 21 19 23 22 22

5 31 27 23 18 23 22

4 30 27 21 17 26

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B30+

0

LSKB

LSKB

M
SK

B

P
m
at
ch

THD
0 60

0

1

30+

0

30+

0

18 24

(c) THD vN without
key-misallignment tolerance

7 21 17 11 9 7 7 9 17

6 23 16 15 11 8 9 17

5 25 21 16 12 9 17

4 27 24 18 19 17

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

LSKB

7 31 26 24 27 38 38 42 39

6 31 27 23 25 39 42 40

5 31 27 23 21 41 37

4 30 27 23 19 42

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B

7 31 26 21 19 23 22 22 22

6 31 27 21 19 23 22 22

5 31 27 23 18 23 22

4 30 27 21 17 26

3 32 31 26 24

2 42 40 37

1 49 45

0 44

0 1 2 3 4 5 6 7

M
SK

B30+

0

LSKB

LSKB

M
SK

B

P
m
at
ch

THD
0 60

0

1

30+

0

30+

0

18 24

(d) THD vN with
key-misallignment tolerance

Fig. 5: True-key-pair disparity, depicting (a): An example of a
trade-off between the Hamming-distance threshold THD and
target key-matching rate Pmatch, here depicted for (LSKB
= 3, MSKB = 3); (b): THD for the baseline key-generator;
(c) and (d): THD for the vN key-generator with- and without
tolerance to key-misallignment, respectively.

01 10 00 00 01 01 00 10 01 11 00

Ks1

IPIs

0  1        0  0     1  0

01 11 00 00 01 01 00 10 01 11 00

Ks2 0           0  0     1  0

IPIs1

IPIs2

Fig. 6: Key-bit misallignment due to VARis. A single bit-error
in the input (IPIs2, bit 4) of the vN extractor causes a shift in
key-segments, resulting in a significant disparity between the
generated keys if a direct bit-by-bit comparison (illustrated by
the dashed arrows) is performed.

the LSBs from this selection (increasing LSKB). While IPI-
bit position 7 has the lowest average bit-error rate, we find the
lowest THD when selecting IPI bits 4-7 (i.e., including noisier
IPI bits in the key-bit selection). We explain this as follows:
Using more bits per IPI implies using less IPIs for generating a
60-bit key, less key segments are affected by VARis. Moreover,
these key segments are protected from multi-bit errors by Gray
coding, allowing for the observed decrease in THD.

Figure 5c depicts THD for the vN key-generator. When
the key-bit selection includes any of the MSBs (LSKB ≥ 0,
MSKB ≥ 4) we find a substantial increase in THD compared
to the baseline by up to 33 bits (for LSKB = 6, MSKB =
7). In sheer contrast to the baseline generator, we find that

7 -1 4 9 9 8 4 -2 -21

6 -1 8 6 9 10 4 -13

5 -2 4 10 15 15 -4

4 1 4 15 11 12

3 -7 -6 4 6

2 -28 -24 -20

1 -42 -36

0 -34

0 1 2 3 4 5 6 7

20

0

LSKB

M
SK

B

7 -7 0 10 13 4 3 -3 -11

6 -7 -1 10 13 4 3 -4

5 -9 0 6 15 4 1

4 -8 0 10 16 -4

3 -7 -6 4 6

2 -28 -24 -20

1 -42 -36

0 -34

0 1 2 3 4 5 6 7

LSKB

M
SK

B 20

0

(a) KSeff baseline

7 -1 4 9 9 8 4 -2 -21

6 -1 8 6 9 10 4 -13

5 -2 4 10 15 15 -4

4 1 4 15 11 12

3 -7 -6 4 6

2 -28 -24 -20

1 -42 -36

0 -34

0 1 2 3 4 5 6 7

20

0

LSKB

M
SK

B

7 -7 0 10 13 4 3 -3 -11

6 -7 -1 10 13 4 3 -4

5 -9 0 6 15 4 1

4 -8 0 10 16 -4

3 -7 -6 4 6

2 -28 -24 -20

1 -42 -36

0 -34

0 1 2 3 4 5 6 7

LSKB

M
SK

B 20

0

(b) KSeff vN

Fig. 7: effective key strength KSeff results for a 60-bit
key using (a) the baseline and (b) the vN key-generator,
respectively.

including the MSBs shows an increase in THD for the vN
key-generator. We explain this observed increase in THD with
the help of Figure 6, which depicts the bit-extraction process
for two entities (s1 and s2). Depicted for both entities are the
input IPI-bits to the vN extractor (IPIs1, IPIs2) as well as
the bits extracted from these input bits (Ks1 , Ks2). Note the
disparity in IPIs1 and IPIs2 in the 4th input IPI-bit. Due
to this disparity, s2 does not generate a bit using IPIs 3 and
4, whereas s1 does, causing a shift in key-indexing. A naive
bit-by-bit comparison on the generated keys, as is indicated by
the arrows in Figure 6, will accordingly result in a significant
inter-key disparity.

Fortunately, there are various methods of tolerating this
shift in key indexing through order-invariant matching [5],
[8]. As such, we re-evaluate THD

4 assuming such an order-
invariant matcher is used, the result of which is presented in
Figure 5d. It is clear that tolerating these key-misallignments
results in a considerable improvement in THD by up to
20 bits (comparing Figures 5c and 5d). However, we still
find a considerable increase in THD, even if key-shifting
is tolerated, with respect to the baseline (Figure 5b). For
example, the minimum THD for the vN key-generator is 17
bits (LSKB = 3,MSKB = 4), compared to a minimum
THD of 7 bits (LSKB = 4, MSKB = 7) for the baseline.
As bit-extraction increases the number of IPIs required for
key generation, there are more IPIs which may be affected
by V ARis, effectively causing an increase in the disparity
between the generated keys.

3) Effective Key Strength: Based on the aforementioned
results, we may now calculate KSeff = Hk − 2· THD − 1,
depicted for both key-generators in Figure 7. For the baseline,
it can be observed that KSeff is minimal (even < 0) when the
key-bit selection includes mostly LSBs or MSBs per IPI (for
(LSKB < 3, MSKB < 3) and (LSKB ≥ 5, MSKB ≥ 5)).
As discussed before, the LSBs of each IPI suffer significantly
from inter-sensor disparity, resulting in a considerable increase
in THD and, therefore, reduction in KSeff . The MSBs, on the
other hand, result in a reduction in KSeff due to the limited
key-entropy Hk. As a result, we find a maximum effective key
strength of 15.2 bits when bits 2-4 are selected from each IPI.

4Strictly speaking, this no longer refers to the Hamming distance. However,
as the threshold still reflects the tolerated (order-invariant) disparity in a true-
key pair, we will retain THD as the notation.



Similar to the baseline, we find that the vN key-generator
(Figure 7b) results in a low KSeff when the key-bit selection
includes mostly the LSBs or MSBs. Despite the considerable
increase in Hk when the vN extractor is applied to the
MSBs, we have found a substantial increase in THD for these
keys. Accordingly, the contribution of the MSBs to KSeff is
limited, resulting in only a slight increase in KSeff of 1.2 bits
(16.4 bits when bits 3-4 are used per IPI, compared to 15.2
bits for the baseline).

4) Key-Generation Time: We describe next the key-
generation time Tkg for the baseline and vN key-generators.
For the baseline key-generator, a fixed number of bits is ob-
tained per IPI, resulting in a deterministic key-generation time
given by Tkg = 60

MSKB−LSKB+1 as depicted in Figure 8a.
Given that at least one bit is obtained per IPI and an average
heart rate of 60 BPM, the baseline key-generator always
respects the 60-second constraint given in Section IV-A1.

In contrast, the vN key-generator extracts – by design
– a non-deterministic number of bits from the MSBs as
a bit is only produced if these MSBs change value. This
non-deterministic behavior results in a variable Tkg , i.e., we
differentiate between Tmax

kg , T avg
kg and Tmin

kg depending on
the bit-extraction case, as depicted in Figures 8b, 8c and 8d,
respectively. Note that we find a disparity between Tmax

kg , T avg
kg

and Tmin
kg when MSBs are included in the key-bit selection,

which is more substantial when the key-bit selection is shifted
to the MSBs (i.e., increasing LSKB and MSKB).

To determine if the vN key-generator is capable of pro-
ducing keys within our 60-seconds constraint, we consider
the maximal key-generation time Tmax

kg (Figure 8b). When an
LSB is included in the key-bit selection (LSKB < 4) we
observe that adding MSBs to key-bit selection (MSKB ≥ 4)
does not yield an improvement in Tmax

kg : As the MSBs are
first passed through the vN extractor (which changes the
number of extracted bits dynamically, based on its input), it
may occur that a 60-bit key is formed from the LSBs alone,
yielding no improvement to Tmax

kg . Note, however, that all
key-bit selections which include an LSB result in a feasible
Tmax
kg ≤ 60 seconds. If the generated keys consist solely of the

MSBs (LSKB ≥ 4), we observe a value for Tmax
kg between

492 and 2,552 seconds, i.e., basing the key solely on the MSBs
results in an infeasible Tmax

kg for the vN key-generator. These
long key-generation times are attributed to the high degree
of serial correlation in the input IPI-bits, yielding a minimal
number of extracted bits (as revealed in Section IV-B1).

We assess the typical key-generation time of the vN key-
generator by considering T avg

kg (Figure 8c). For a feasible key-
bit selection (Tmax

kg < 60, found for LSKB < 4), we find
an average increase in T avg

kg between 1.2x and 3.4x compared
to baseline. Furthermore, if we compare the T avg

kg when both
generators produce their respective strongest keys (as discussed
in the previous Section), we find that the vN key-generator has
an increased (average) key-generation time of 2.5x (up to 50
seconds).

Besides, by calculating T avg
kg , it is now possible to deduce

the average extraction rate of the vN extractors in the MSB po-
sitions, which defines how many bits are extracted (on average)
per input bit. By selecting the MSBs individually (LSKB =
MSKB ≥ 4) from Figure 8c, we find that an average of 274,

7 8 9 10 12 15 20 30 60

6 9 10 12 15 20 30 60

5 10 12 15 20 30 60

4 12 15 20 30 60

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 15 20 30 60 492>1k>1k>2k

6 15 20 30 60 492>1k>1k

5 15 20 30 60 492>1k

4 15 20 30 60 622

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 14 18 25 41 130188270447

6 14 18 25 43 144240393

5 14 18 26 45 181348

4 15 19 27 50 274

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7

7 11 13 16 23 36 52 72 120

6 12 14 19 28 58 84 148

5 13 16 21 33 94 200

4 14 18 24 42 194

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

LSKB

M
SK

B

61+

0

61+

0

61+

0

61+

0

Keygen baseline

vN Keygen worst

vN Keygen avg vN Keygen best

(0 , 7)

(3 , 5)

(3 , 7)

(a) Tkg baseline

7 8 9 10 12 15 20 30 60

6 9 10 12 15 20 30 60

5 10 12 15 20 30 60

4 12 15 20 30 60

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 15 20 30 60 492>1k>1k>2k

6 15 20 30 60 492>1k>1k

5 15 20 30 60 492>1k

4 15 20 30 60 622

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 14 18 25 41 130188270447

6 14 18 25 43 144240393

5 14 18 26 45 181348

4 15 19 27 50 274

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7

7 11 13 16 23 36 52 72 120

6 12 14 19 28 58 84 148

5 13 16 21 33 94 200

4 14 18 24 42 194

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B
LSKB

M
SK

B

61+

0

61+

0

61+

0

61+

0

Keygen baseline

vN Keygen worst

vN Keygen avg vN Keygen best

(0 , 7)

(3 , 5)

(3 , 7)

(b) Tmax
kg vN

7 8 9 10 12 15 20 30 60

6 9 10 12 15 20 30 60

5 10 12 15 20 30 60

4 12 15 20 30 60

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 15 20 30 60 492>1k>1k>2k

6 15 20 30 60 492>1k>1k

5 15 20 30 60 492>1k

4 15 20 30 60 622

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 14 18 25 41 130188270447

6 14 18 25 43 144240393

5 14 18 26 45 181348

4 15 19 27 50 274

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7

7 11 13 16 23 36 52 72 120

6 12 14 19 28 58 84 148

5 13 16 21 33 94 200

4 14 18 24 42 194

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

LSKB

M
SK

B

61+

0

61+

0

61+

0

61+

0

Keygen baseline

vN Keygen worst

vN Keygen avg vN Keygen best

(0 , 7)

(3 , 5)

(3 , 7)

(c) T avg
kg vN

7 8 9 10 12 15 20 30 60

6 9 10 12 15 20 30 60

5 10 12 15 20 30 60

4 12 15 20 30 60

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 15 20 30 60 492>1k>1k>2k

6 15 20 30 60 492>1k>1k

5 15 20 30 60 492>1k

4 15 20 30 60 622

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

7 14 18 25 41 130188270447

6 14 18 25 43 144240393

5 14 18 26 45 181348

4 15 19 27 50 274

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7

7 11 13 16 23 36 52 72 120

6 12 14 19 28 58 84 148

5 13 16 21 33 94 200

4 14 18 24 42 194

3 15 20 30 60

2 20 30 60

1 30 60

0 60

0 1 2 3 4 5 6 7
LSKB

M
SK

B

LSKB

M
SK

B

61+

0

61+

0

61+

0

61+

0

Keygen baseline

vN Keygen worst

vN Keygen avg vN Keygen best

(0 , 7)

(3 , 5)

(3 , 7)

(d) Tmin
kg vN

Fig. 8: Key-generation time Tkg for both key-generators: (a)
depicts Tkg for the baseline key-generator; (b), (c) and (d)
depict the Tmax

kg , T avg
kg and Tmin

kg for the vN key-generator,
respectively.

348, 393 and 447 input-bits are required to extract 60 bits for
IPI-bit positions 4, 5, 6 and 7, respectively. Accordingly, the
extraction rates for these respective bit-positions are 21.9%,
17.3%, 15.3% and 13.4%.

V. CONCLUSION

In this paper, we have introduced a novel method of gen-
erating security keys in heart-beat-based security by applying
a von Neumann entropy extractor on the most-significant bits
(MSBs) of each IPI. This extractor produces bits with increased
randomness with an average bit-extraction rate between 13.4%
and 21.9% (when applied to IPI-bit positions 7 and 4, re-
spectively), resulting in a significant increase in key-entropy
Hk of up to 2.5x. However, the increase in Hk is directly
coupled to an increase in the average disparity for a given true-
key pair, requiring a greater tolerance THD to this inter-key
disparity. We have found this trade-off between Hk and THD

to dramatically impact the effective key strength KSeff for
a vN key-generator, yielding only slightly stronger keys than
the non-extracting generator (16.4 bits compared to 15.2 bits
for a 60-bit key), while requiring an increase in key-generation
time of up to 2.5x. This work has shown that entropy extraction
in heart-beat-based security is not trivial, given the complex
interplay between entropy and inter-key disparity.

VI. ACKNOWLEDGEMENT

This work has been supported by the EU-funded projects
DeSyRe (Grant agreement no: 287611) and SHARCS (Grant
agreement no: 644571).



REFERENCES

[1] S.-D. Bao et al. Using the timing information of heartbeats as an
entity identifier to secure body sensor network. In T-ITB, pp. 772-779,
volume 12. IEEE, 2008.

[2] S.-Y. Chang, Y.-C. Hu, H. Anderson, T. Fu, and E. Y. Huang. Body
area network security: robust key establishment using human body
channel. In Proceedings of the USENIX conference on Health Security
and Privacy, pages 5–5, 2012.

[3] A. L. Goldberger et al. Physiobank, physiotoolkit, and physionet
components of a new research resource for complex physiologic signals.
Circulation, 101(23):e215–e220, 2000.

[4] N. Iyengar et al. Age-related alterations in the fractal scaling of cardiac
interbeat interval dynamics. AJP-Regu, 271(4):R1078–R1084, 1996.

[5] A. Juels and M. Sudan. A fuzzy vault scheme. Designs, Codes and
Cryptography, 38(2):237–257, 2006.

[6] G. B. Moody and R. G. Mark. The impact of the mit-bih arrhythmia
database. IEEE Eng Med Biol, 20(3):45–50, 2001.

[7] C. C. Poon et al. A novel biometrics method to secure wireless body
area sensor networks for telemedicine and m-health. IEEE Commun.
Mag., pages 73–81, 2006.

[8] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial & Applied Mathematics, 8(2):300–
304, 1960.

[9] M. Rostami et al. Heart-to-heart (h2h): authentication for implanted
medical devices. In ACM CCS, pages 1099–1112, 2013.

[10] M. Rushanan et al. Sok: Security and privacy in implantable medical
devices and body area networks. Proceedings of the IEEE S&P, pages
529–539, 2014.

[11] M. Santha and U. V. Vazirani. Generating quasi-random sequences
from semi-random sources. Journal of Computer and System Sciences,
33(1):75–87, 1986.

[12] R. M. Seepers et al. Adaptive entity-identifier generation for imd
emergency access. In ACM CS2, pages 41–44, 2014.

[13] R. M. Seepers et al. Peak misdetection in heart-beat-based security
characterization and tolerance. 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, 2014.

[14] C. E. Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(1):3–
55, 2001.

[15] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta. Pska:
usable and secure key agreement scheme for body area networks. ITB,
IEEE Trans. on, 14(1):60–68, 2010.

[16] J. von Neumann. Various techniques used in connection with random
digits. Monte Carlo Method, National Bureau of Standards Applied
Math, pages 36–38, 1951.

[17] J. Walker. Ent a pseudorandom number sequence test program, jan
2008.

[18] F. Xu et al. Imdguard: Securing implantable medical devices with the
external wearable guardian. In INFOCOM, pages 1862–1870. IEEE,
2011.

[19] G.-H. Zhang et al. Analysis of using interpulse intervals to generate
128-bit biometric random binary sequences for securing wireless body
sensor networks. T-ITB, 16(1):176–182, 2012.


