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Abstract—In heart-beat-based security, a security key is de-
rived from the time difference between two consecutive heart
beats (the Inter-Pulse-Interval, IPI) which may, subsequently,
be used to enable secure communication. While heart-beat-
based security holds promise in mobile health (mHealth) appli-
cations, there currently exists no work that provides a detailed
characterization of the delivered security in a real system. In
this paper, we evaluate the strength of IPI-based security keys
in the context of entity authentication. We investigate several
aspects which should be considered in practice, including subjects
with reduced heart-rate variability, different sensor-sampling
frequencies, inter-sensor variability (i.e., how accurate each entity
may measure heart beats) as well as average and worst-case-
authentication time. Contrary to the current state of the art, our
evaluation demonstrates that authentication using multiple, less-
entropic keys may actually increase the key strength by reducing
the effects of inter-sensor variability. Moreover, we find that the
maximal key strength of a 60-bit key varies between 29.2 bits and
only 5.7 bits, depending on the subject’s heart-rate variability.
To improve security, we introduce the Inter-multi-Pulse Interval
(ImPI), a novel method of extracting entropy from the heart
by considering the time difference between two non-consecutive
heart beats. Given the same authentication time, using the ImPI
for key generation increases key strength by up to 3.4x (+19.2
bits) for subjects with limited heart-rate variability, at the cost
of an extended key-generation time of 4.8x (+45 sec).

I. INTRODUCTION

Mobile-health (mHealth) is an emerging technology which
allows for continuous, remote health care through the use
of mobile devices. Body-Area Networks (BANs) may pro-
vide continuous patient monitoring through the use of cheap,
wearable biosensors [14]. Modern Implantable Medical De-
vices (IMDs) feature wireless capabilities to allow remote
configuration without requiring invasive surgery or data-log
broadcasting from a home-monitoring station [9]. Due to the
wireless nature of mHealth solutions and the sensitivity of
the data transmitted, security has shown to be an important
aspect of mHealth. Non-secure communication may allow an
adversary to steal private patient data or, worse, alter device
parameters or even prevent treatment [8], [14].

The inter-pulse interval (IPI) of heart beats has recently been
proposed for securing both wireless IMDs and BANs [17],
[18], [20]. In heart-beat-based security (HBBS), each sensor
measures a heart-related biosignal, for example, cardiac ac-
tivity using an electrocardiogram (ECG) or blood flow, and
forms a biometric security key based on the time interval
between two consecutive heart beats. Previous work has shown

that this interval may contain a significant degree of entropy,
while it may be measured with some consistency and in
different locations of a patient’s body. These two charac-
teristics allow IPIs to be used for shared-secret generation
between two entities simultaneously sampling the same heart
beat, thus forming the basis for security aspects such as key
agreement [25], BAN-device pairing [5], [17], [27] or IMD
(-emergency) authentication [18], [20].

While HBBS shows potential for mHealth applications, it
is not yet clear how much security the IPI may provide in
practice. The statistical properties of IPIs are not yet fully
understood [19] and most related works have not consid-
ered subjects with significantly limited heart-rate variability
(HRV) [5], [7], [17], [18], [21]. In addition, the effect of
inter-sensor variability (VARis), i.e., the disparity between
heart-beat measurements between two entities, has either been
neglected [28] or has not been studied in sufficient detail [19].
A more profound understanding of how these properties affect
the security of IPI-based keys could lead to new, more efficient
key-generation methods.

In this paper, we evaluate the security performance of heart-
beat-based security in the context of entity authentication.
Specifically, this paper contributes the following:

• A thorough characterization of the strength of IPI-based
keys, investigating several aspects which may occur
in practice. Specifically, we consider: 1) subjects with
various degrees of HRV; 2) different sensor sampling-
frequencies; 3) realistic VARis based on measurements
obtained from ECG and blood-pressure recordings; and
4) average and worst-case authentication time.

• The first work which considers the use of entropy extrac-
tion in HBBS, using a novel method of extraction through
the Inter-multi-Pulse-Interval (ImPI). The ImPI considers
the time difference between two non-consecutive heart
beats, resulting in an unprecedented increase in key
strength at the cost of an extended key-generation time.

This paper is structured as follows: First, we briefly discuss
why HBBS is a suitable biometric for mHealth applications,
along with related works, in Section II. In Section III, we
describe the existing and improved method of generating keys
in HBBS using the IPI and ImPI, respectively. These key-
generators are subsequently evaluated in Section IV, after
which concluding remarks are given in Section VI.
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II. BACKGROUND AND RELATED WORK

In this Section, we first compare HBBS to other biomet-
rics qualitatively, after which we discuss works related to
its security performance. HBBS is a form of cardiovascular
biometrics, which use the characteristics of a person’s cardiac
cycle for entity authentication. Cardiovascular biometrics are
typically based on an electrocardiogram (ECG), using either
a combination of various fiducial features (e.g., “ST-slope”
or “ST-interval”) or non-fiducial features, for example, the
autocorrelation between heart-beat records [6], [16], [23].
Conventionally, a good biometric is one that is easily mea-
sured for the general population (universality, measurability,
performance), characterizes an individual well (uniqueness),
is invariant over time (permanence) and is accepted by the
relevant population (acceptability) [13]. HBBS differs from
other cardiovascular biometrics in that it uses only a single
fiducial feature, that is, the inter-pulse interval (IPI, also
denoted as the “RR-interval”) between heart-beats. This makes
it a suitable candidate for many mHealth applications as [17]:
• Heart beats are measurable throughout the body using

many types of cardiovascular recordings, including ECG,
blood pressure (BP) and photoplethysmography (PPG).
As such, it may be measured through a wide spectrum
of sensors and locations (more universally than other
cardiovascular biometrics), which is common in, for
example, a BAN;

• Heart beats (“R-peaks”) are arguably the most distinct
feature in any cardiovascular recording, permitting low-
cost peak detection and key generation; and

• Cardiac function is one of the most commonly measured
values in mHealth. As a result, many systems will already
have the required sensors and peak-detectors in place,
allowing HBBS to be included at minimal overhead.

The downside of HBBS is that the IPI is a random (time-
variant) feature which compares infavourably to other biomet-
rics in terms of permanence [17]. However, its universality
and low-cost detection permit all involved entities to generate a
fresh, random key for each communication session, increasing
security while bypassing several issues related to permanence,
such as template outdating [2].

The key strength of an HBBS system depends on both the
randomness of the generated keys and the inter-key disparity
allowed for a true-key pair, as will be discussed in Section IV.
Accordingly, here we first discuss relevant studies on the IPI-
entropy (key-randomness), after which we review a number of
related works on the inter-key disparity. The entropy per IPI
stems from the heart-rate variability (HRV), a physiological
phenomenon caused by the balancing action between the
parasympathetic and sympathetic nervous systems [1], [4].
HRV is known to be reduced when either of these nervous
systems dominates the other and is affected by, among others,
smoking, age, gender, diabetes, brain damage, cardio-vascular
disorders (CVDs), mental state and, pherhaps most substan-
tially, exercise [1], [3], [4], [24]. Despite the available knowl-
edge on HRV, only a few works have evaluated the entropy
per IPI in the context of security (in bits), considering healthy
subjects, hypertensive subjects as well as CVD patients [18],

[21], [28], all of which conclude that four highly entropic bits
are available per IPI. In addition, a recent, preliminary study
has considered the effect of exercise on IPI-entropy, showing
that subjects during exercise may lose up to 75% of their
entropy compared to subjects at rest [20]. In this work, we
build upon the work presented in [20], [21] to provide a more
thorough evaluation on the entropy per IPI, considering both
subjects with various degrees of HRV and different sensor
sampling frequencies.

In an attempt to increase the entropy obtained from IPIs,
Bao et al. [5] have proposed using the multi-Inter-Pulse
Interval (mIPI) for key generation, where mIPI(i,j) is the
accumulation of all IPIs previously considered for key gen-

eration, i.e., mIPI(i,j) =
j−1∑
i=1

IPI(i,i+1); j > i. While our

own experiments confirm the apparent increase in entropy
per mIPI , we note that it does not enhance security. The
mIPI attempts to increase randomness using a simple addition
and, as famously stated by John von Neumann, “any one who
considers arithmetical methods to produce random digits is,
of course, in a state of sin” [26]. In this paper we present
the Inter-multi-Pulse Interval (ImPI) which, contrary to the
mIPI, does not reuse its entropic source and does allow for
an increase in key strength, albeit at the cost of extended key-
generation time. To the best of our knowledge, our work is
the first to successfully apply entropy extraction in HBBS.

The inter-key disparity allowed for a true-key pair
(Hamming-distance threshold, THD) is determined by the (ex-
pected) VARis in an mHealth system. While all studies agree
that VARis results in a reduction of security performance, the
characteristics of such variability are not fully understood,
partially due to the different methodologies followed [19].
Poon et al. [17] and Bao et al. [5] have modeled the VARis as
the difference between an ECG and PPG (Photoplethysmogra-
phy), showing a significant disparity between generated keys
(a 2.06% false-rejection rate has been described for a 128-bit
key using THD = 48). Another study has shown a similar
disparity (describing a best-case THD = 16 bits for a 60-bit
key) by considering VARis as the difference between ECG
and blood-pressure recordings [21]. Other works have either
overlooked the VARis [28] or have modeled it as two different
leads of the same ECG [7], [18], both of which cannot be
considered realistic for typical mHealth applications. In this
work, we use a VARis model described in [21] which consid-
ers multiple biosignals (ECG and blood pressure) measured
at different locations of the same body. We consider such a
model representative for typical mHealth applications, as it is
likely that two different entities, for example, in a BAN, will
have access to different biosignals and will be recorded from
different locations. We demonstrate how the VARis affects
the security strength considering various parameters, including
the bits selected per IPI, the (average) heart rate of a subject,
multi-key authentication, sensor-sampling frequency and the
average and worst-case authentication time.
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Fig. 1: Key generation using the I(m)PI.

III. INTER-(MULTI)-PULSE INTERVAL

In this Section we describe the most commonly used method
for facilitating entity authentication in HBBS based on the IPI,
after which we present our improved method using the ImPI.

Entity authentication in HBBS comprises two steps:
Security-key generation by two entities and entity-
authentication, if these keys are similar enough. Figure 1
illustrates the method of security-key generation using
the IPI [17], [18], [20], [21], [28]. First, each entity
detects a number of heart beats from their cardiac
biosignals and calculates the time interval (IPI, in this
work considered as an 8-bit value) from consecutive beats,
i.e., IPI(i,i+1) = beati+1−beati. From each IPI, a predefined
set of bits m is selected (the key-bit selection, containing
nm bits per IPI) to form a key segment: The most-significant
IPI bits are commonly discarded due to their inherent low
entropy, while the least-significant IPI bits may be discarded
due to a high VARis

1. Gray coding is applied to the key
segment in order to strengthen it against VARis (reducing
the number of bits affected by a disparity between IPIs),
after which n key segments are concatenated to form security
key k. Entity authentication is successful if the generated
keys are similar enough (not identical, as some disparity
may be expected for a given true-key pair due to VARis).
This similarity is commonly assessed by comparing the
Hamming distance between the keys to a predefined threshold
(hd(k1 ⊕ k2) < THD, where hd(x) represents the number of
non-zero values in x and THD denotes the Hamming-distance
threshold).

It will be shown in our evaluation in Section IV-B that
the strength of IPI-based keys is in part limited by the low
entropy of the most-significant IPI-bits due to correlations
between consecutive heart-beats. We strive to increase the
key strength by replacing the IPI with the ImPI in the
key-generation process, where we define the ImPI as the
time difference considering j consecutive heart beats, i.e.,

1Assuming precise and non-drifting sensors, VARis is the variance between
two different sensor measurements of cardiac biosignals, caused by the
variable pulse-transition time of ventricular contraction (heart beats) to the
rest of the body due to, for example, motion and pressure differences.

0
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1 11 21 31 41 51
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Fig. 2: Key strength KSeff as a function of Hk and THD.

ImPI(j·(i−1)+1, j·i+1) = beatj·i+1 − beatj·(i−1)+1. The
ImPI is illustrated for j = 4 (ImPI(1,5)) in Figure 1.
Note that the ImPI is equivalent to the IPI for j = 1.
By increasing j, we limit the effect of inter-IPI correlations
as individual, consecutive heart-beats are ignored for key-
generation, resulting in an increase in entropy per ImPI. The
true-key-pair disparity, however, depends on the accuracy at
which each entity may detect each heart beat in IPI/ImPI
generation. As both the IPI and ImPI are calculated based on
two heart beats, this disparity remains unaffected. Accordingly,
it may be expected (and shown in subsequent Sections) that
using the ImPI allows for an increase in key strength, albeit
at an increased key-generation time (as more heart beats are
required to obtain an ImPI).

IV. EVALUATION

In this Section, we evaluate the performance of the IPI and
ImPI-based key-generators, considering the key-entropy, true-
key-pair disparity and authentication time. First, we introduce
our experimental setup in Section IV-A, after which our
evaluation follows in Section IV-B.

A. Experimental Setup

To evaluate the performance of IPI- and ImPI-based key-
generators, we first introduce the effective key strength KSeff

as a figure of merit. Using KSeff , we may quantify the
security performance as a function of the key-entropy Hk

and the required Hamming-distance threshold THD for a given
true-key pair. Afterwards, we present the datasets considered
in our evaluation.

1) Key Strength: The strength of a key is determined by the
effort required by an attacker to guess it. To quantify the key
strength in bits, we define the effective key strength KSeff

as the number of entropic bits which should be known to an
attacker in order to successfully authenticate to the IMD with
probability Pauth = 0.5 [21]. That is, an attacker would
have to mount on average 2KSeff attacks. To exemplify, in
Figure 2 we plot a distribution of Hamming distances between
an authentication key and various, randomly selected attacker
keys. This distribution X (x being the number of mismatched
bits in an n-bit key) is expectedly binomial with an average
number of mismatches E(X) = p0 · Hk = p1 · Hk = Hk

2 ,
where p0 and p1 denote the probability of a bit being zero or
one (for entropic bits, p0 = p1 = 1

2 ) and Hk denotes the
number of entropic bits in the key (ideally, Hk = n). Since,
on average, half the number of entropic bits are mismatched
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by simply guessing, for successful authentication an attacker
would need to try up to:

KS = 2 · E(X)− 1 = Hk − 1 bits,

the ”-1” term accounting for Pauth = 0.5.
As it is unlikely that keys will be a perfect match due

to VARis, we allow entities to authenticate if their keys
differ no more than THD bits, where THD denotes the
Hamming-distance threshold. As a result, the average number
of mismatched bits will be effectively reduced by the amount
of ”don’t care” THD bits; essentially changing E(X) to
E′(X) = Hk

2 − THD (see Figure 2). In this more general
case, KSeff is calculated as follows:

KSeff = 2 · E′(X)− 1

= Hk − 2 · THD − 1 bits. (1)

Note that KSeff may now assume negative values, sig-
nifying that an attacker would require less than one attack
on average to guess the key (2KSeff < 1). Obviously, a
negative KSeff will never exist in practice as an attacker
would always require at least one attack, i.e., KSeff would be
greater or equal to zero. Nevertheless, considering KSeff as a
potentially negative value will allow us to investigate exactly
how far the generated keys are from providing any form of
security (KSeff > 0). To determine KSeff we, thus, have to
evaluate the key-entropy Hk and required Hamming-distance
threshold THD, the acquisition of which is described next.

a) Entropy: The upper limit Hk of the effective key
strength is determined by the randomness of the key-bit
selection m (the bit-postions selected per IPI) for key gen-
eration. We assess this randomness for different m by using
arithmetic-mean, autocorrelation and compression tests over
the generated keys (extending the tests used in [21]):
• The arithmetic-mean test evaluates the average probabil-

ity of a particular key-bit being one or zero, i.e., (P(xi =
0), P(xi = 1)) and, thus, represents the randomness when
a bit is sampled from a key. This test reveals a bias in
the key bits if P (xi = 0) 6= P (xi = 1);

• The autocorrelation test determines the probability of a
key-bit being identical to its lth neighboring bit, i.e.,
P (xi = xi−l), where we choose l = 1, 2, 3, ..., 20 to
determine if there are any intra-key correlations. A high
value for P (xi = xi−l) indicates repetitive patterns
in consecutive IPIs, yielding a reduction in entropy (and
security) as the bits in IPI(i,i+1) have predictive value
over those in IPI(i+l,i+1+l).

• The compression test splits the generated keys into
c-sized symbols S and evaluates the frequency of
each symbol occuring, i.e., P (s) =

∑
S=s∑
S , where

s = 1, 2, 3, ..., 2c, S is the value of c consecutive bits
and we choose c = 1, 2, 3, ..., 8. A high value for P (s)
indicates that certain symbols (bit-patterns) s occur more
frequently throughout the distribution, indicating correla-
tions between consecutive IPIs and reducing entropy for
reasons stated above.

Based on the probabilities calculated using our tests, we
may compute the Shannon entropy for the arithmetic mean

(Ham), autocorrelation (Hac) and compression (Hc) tests
as [22]:

H =
∑
i

pi log2 pi (2)

where pi is the probability of a particular event, for example,
the probability of a given symbol s in the compression test.
As a conservative estimation, we define the minimum entropy
Hmin = min(Ham, Hac, Hc).
Hk is expressed in terms of equivalent entropic bits, that

is, the probability of guessing key k is equivalent to guessing
a key with Hk truely entropic bits (where a truely entropic
bit satisfies H = 1, p1 = p0 = 1

2 ). To compute
Hk, we first calculate Hi

min for all i IPI-bit positions and
subsequently obtain pi0 and pi1 from eq. 2. For each IPI-bit
position, a symbol S may be formed by concatenating neq
bits. Based on pi0 and pi1, the highest probability of guessing
S is pS = p

neq
max, where2 pmax = max(pi0, p

i
1). By setting

pS = 1
2 , i.e., S is equivalently random as a truely entropic

bit (as pS = pS = 1
2 ), we may compute the number of

bits required to form S as neq = logpmax
( 12 ). Accordingly,

each IPI bit shall have equivalent entropy Hi
eq = 1

neq
. After

calculating Hi
eq for each IPI-bit position, the entropy of the

key-bit selection m may be obtained3 from Hm
eq =

∑
i

Hi
eq

for all i ε m. Finally, as n key-segments are combined to form
key k, we obtain Hk = Hm

eq · n.
b) Hamming-Distance Threshold: THD is a function of

the desired probability of key-matching and VARis. Lowering
THD allows for an increase in KSeff (as an attacker’s key
is required to be more similar to the actual key), yet also
reduces the chance of successful matching for a true-key pair.
To determine THD, we compare the keys generated by two
entities and see at what threshold THD the keys would lead to
authentication reliably, where we define reliable authentication
of a new key as successful authentication within a predefined,
upper time limit with probability Pauth = 1 − 10−6 [21].
Without loss of generality, in this work we set the key length
to 60 bits and the time limit to 60 seconds. We expect that
such an authentication criterion will be feasible for some of
the most safety-critical applications of IPI-based security, such
as providing emergency-authentication credentials [18], [20].
We evaluate a 60-bit key as it is allows us to easily assess the
key strength under our authentication constraints, as has been
done in prior work [18], [21].

We model VARis as the time difference between the heart-
beats measured by ECG and blood-pressure (BP) record-
ings obtained from the Fantasia dataset [12], that is,
VARis = beatsBP − beatsECG. We consider this model
realistic for typical mHealth applications, such as a BAN,
as it incorporates the effects of both different biosignals and
measurement locations. As our used datasets provide ECG

2Given that p0 = 1 − p1, a maximum operator is used so as to get the
highest probability between p0 and p1. This is the only way that, when
concatenating multiple bits n, we can get a combined probability pn

0|1 = 0.5.
3In this and previous work, we have not found any intra-IPI dependencies

(between IPI bits), permitting Hm
eq to be calculated as a linear addition of the

Hi
eq of the selected IPI bits [21]
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TABLE I: Average bit-error rate (BER) dataset due to VARis

when applied to the MIT-Regular dataset.

Bit # 0 1 2 3 4 5 6 7
BER 0.46 0.29 0.15 0.08 0.04 0.02 0.01 0.00

TABLE II: Dataset specifications.

Dataset #Subjects #IPIs Avg. heart Sensor freq.
rate (BPM) (Hz)

MIT-Regular 11 21696 69.3 360
MIT-Ectopic 12 16008 81.7 360
MIT-Episode 20 38424 86.4 360

RE-Rest 58 10668 75.8 200
RE-Exercise 53 11864 101.4 200

recordings only (first entity), we add VARis to these recordings
to emulate BP recordings (second entity) [21]. The validity
of this approach is supported by the following simularities
between our model and established works which measure the
second recording directly:

• The time difference between the recording are normally
distributed, as also described in [11], [18];

• The bit-error rates (presented in Table I) are similar to
those reported in [11]. Note that the bit-error rate is
substantial (0.46) for the least-significant IPI-bits and
shows an exponential decrease for more significant IPI-
bits; and

• The relation between THD and the resulting au-
thentication rate [21] is analogous to that reported
in [5], [11], [17].

2) Datasets: Table II shows the number of IPIs, average
heart rate (in Beats Per Minute (BPM)) and sensor-sampling
frequencies of the datasets used in our experiments. As we
consider CVD patients as likely users of (cardiac) IMDs,
we have used the MIT-BIH arrhythmia (MIT-*) dataset, a
commonly used dataset containing recordings of subjects with
a wide variety of CVDs [10], [15]. In order to investigate
the impact of cardiac arrhythmias on the entropy of IPIs, we
have split this dataset into the following subsets: MIT-Regular:
Subjects which show less than 0.5% of abnormalities from a
normal sinus rhythm; MIT-Ectopic: Subjects with 0.5% to 10%
of their heart beats being ectopic (premature ventricular or
atrial contraction); and MIT-Episode: Subjects which exhibit
episodes of ventricular bigeminy, trigeminy, tachycardia or
with more than 10% of their beats being ectopic. In addition,
we have used the Rest-And-Exercise (RE-*) dataset from the
BioSec ECG-database [2]. This dataset contains two sets of
recordings, one from subjects at rest (RE-Rest) and one from
the same subjects immediately after exercise (RE-Exercise).
Using the RE-Exercise dataset will allow us to investigate the
strength of keys generated for subjects during exercise, which
is known to drastically reduce HRV (and, thus, entropy per
IPI) as described in Section II. Besides, as the recordings in
the RE-* dataset are sampled at 200 Hz, roughly half of the
MIT-* dataset (360 Hz), we may characterize the key strength
as a function of sampling frequency by comparing the RE-Rest
and MIT-Regular datasets.

TABLE III: Entropy-test results for the MIT-Regular dataset.

Bit Hi
am Hi

ac Hi
c Hi

min Hi
eq

0 1.00 1.00 1.00 1.00 0.91
1 1.00 1.00 1.00 1.00 0.91
2 1.00 1.00 1.00 1.00 0.92
3 1.00 1.00 1.00 1.00 0.91
4 1.00 0.98 0.97 0.97 0.74
5 0.99 0.89 0.86 0.86 0.48
6 0.99 0.74 0.70 0.70 0.30
7 0.83 0.46 0.42 0.42 0.13

B. Experimental Results

As described in the previous Section, the effective key
strength KSeff is used to quantify the performance of IPI-
and ImPI-based key-generators. To obtain KSeff , we first
provide a detailed description of the key-entropy Hk, followed
by an evaluation of the required Hamming-distance threshold
THD for a given true-key pair. KSeff is, then, derived by
considering Equation (1).

1) Entropy: In this Section, we evaluate the entropy per
I(m)PI, considering the frequency and HRV characteristics of
the used datasets. This evaluation is first carried out for the
baseline key-generator which is based on the IPI, after which
we show how the ImPI improves the key entropy.

a) IPI: Let us first consider the situation where only
one bit is selected per IPI for the baseline key-generator.
Table III presents the entropy results for the MIT-Regular
dataset, showing the test results for all i IPI-bits (Hi

am, Hi
ac

and Hi
c) and the resulting min-entropy Hi

min. Other datasets
have similar results and are discussed later in this Section. In
line with related work, we see that the four least-significant
bits of each IPI contain a high degree of entropy, scoring the
maximum 1.00 for all tests. From IPI-bit position 4 onwards,
we find that the entropy results are gradually decreasing:
While Hi

am appears mostly unaffected, we see a substantial
decrease in Hi

ac and Hi
c. That is, these most-significant IPI-

bits do not show a particular bias, they show significant
correlations between consecutive IPIs (the minimum value for
Hi

ac and Hi
c were obtained using test parameters l = 1 and

c = 8, respectively), effectively reducing entropy. Table III
also presents the equivalent entropy per IPI-bit Hi

eq . Note
that even though Hi

min is considerably high for several bit
positions (1.00), Hi

eq is substantially lower with a maximum
value of 0.92: Due to the logarithmic scale onto which Hi

min

is defined, even a small difference between the maximum-
attainable entropy (Hi

min = 1) and the measured Hi
min results

in a significant reduction in Hi
eq . For the most-significant IPI

bits, the impact on Hi
eq is more dramatic.

To understand the effects of HRV and sensor-sampling
frequency on the entropy per IPI, we depict Hi

eq for the various
datasets in Figure 3, including confidence intervals (with a
confidence coefficient of 0.01). Note that Hi

eq is monotonously
decreasing for all datasets as a function of i, i.e., the inclusion
of more significant IPI-bits in they key-bit selection m will
inevitably result in a reduction of Hm

eq . From Figure 3, we
make three interesting observations: 1) All of the MIT-*
datasets maintain a relatively high Hi

eq (≥ 0.90) for their
four least-significant IPI-bits. While it appears that ectopic
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Fig. 3: Entropy per IPI bit Hi
eq for the considered datasets.
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Fig. 4: Entropy per ImPI bit Hi
eq as a function of interval size

j, here depicted for the RE-Exercise dataset.

beats result in a slightly lower Hi
eq compared to a regular

heart rate (comparing MIT-Ectopic to MIT-Regular), we find
that the entropy of patients during episodes of arrhythmia is
significantly higher (MIT-Episode); 2) Comparing the MIT-
Regular to the RE-Rest datasets shows the effect of a lower
sensor-sampling rate. The RE-Rest follows the same trend
as the MIT-Regular dataset, albeit shifted to the left by one
bit position, i.e., lowering the sampling frequency reduces
the entropy which may be obtained; and 3) The RE-Exercise
dataset shows a rapid decrease in entropy from IPI-bit position
1 onwards compared to other datasets, i.e., subjects with
limited HRV show a significant reduction in entropy per IPI.

b) ImPI: Let us now consider Hi
eq for ImPIs as a

function of interval size j, as depicted in Figure 4 for the
RE-Exercise dataset. Recall from Section III that the ImPI is
equivalent to the IPI for j = 1. Other datasets follow similar
trends and will be discussed later in this Section. First, looking
at i = 0 (the least-significant ImPI-bit), we observe that H0

eq

remains at its maximum value of 0.89 bit. As this bit position
already contains a strong degree of entropy, increasing the
interval size j per ImPI does not increase H0

eq . For subsequent
bit positions, however, we find that increasing j does increase
their entropy. Bit position 2, for example, has an entropy H2

eq

of 0.74 for j = 1; 0.86 for j = 2; and reaches the “ceiling”
of 0.89 bit for j = 3. For more significant ImPI-bits, the
increase in Hi

eq is more limited. Regardless of bit position,
though, all trends in Figure 4 appear to be monotonously
increasing, i.e., increasing j results in an increase in entropy
per ImPI.
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Fig. 5: Entropy per heart beat Hm
eq/j using ImPI-bit positions

2-5.

The downside of increasing j is that j times more heart
beats are required to obtain one ImPI, i.e., less ImPIs may
be generated in a given amount of time compared to IPIs.
To provide a direct comparison in terms of extraction rate,
that is, the entropy extracted per heart beat, we normalize
the obtained entropy per I(m)PI by the heart-beat intervals
considered (Heq/j). A representative example is provided in
Figure 5 for the various datasets, where the key-bit selection
m is bits 2-5 of each I(m)PI. For j = 1 (IPIs), we find a
difference in Hm

eq/j between the various datasets due to the
differences in the entropy Hm

eq per IPI, as previously shown
in Figure 3. By subsequently increasing j, we find that Hm

eq/j
is reduced for all datasets, in particular for the MIT-* datasets
which have a high Hm

eq/j for j = 1. Datasets with high
initial entropy (j = 1) cannot benefit from j >1, resulting
in progressively lower entropy for increasing j’s. Datasets
with limited entropy per IPI (RE-Exercise, RE-Rest), on the
other hand, allow for an increase in Hm

eq when j is increased,
resulting in a less dramatic reduction in Hm

eq/j. Due to this
saturation of entropy, we find that Hm

eq (and, thus, the entropy
per ImPI) becomes asymptotically the same as j is increased
for all datasets.

2) Hamming-Distance Threshold: We next evaluate the re-
quired Hamming-distance threshold THD for a given true-key
pair. First, we consider THD for an IPI-based key-generator as
a function of the key-bit selection m, multi-key authentication
and heart rate. Afterwards, we describe the effects on THD

when using the ImPI.
a) IPI: Figure 6 depicts THD as a function of the key-bit

selection m (recall that m is formed by selecting nm bits per
IPI (bpi)) and a-multi-key authentication (described later) for
the MIT-Regular dataset. When m includes the least-significant
IPI bit (starting from bit 0), we find a high value for THD.
This value generally drops when selecting more significant bits
for m: As these more significant IPI-bits are less sensitive to
VARis, they contribute relatively little to the disparity between
two keys.

Using nm bpi’s implies that the number of IPIs needed to
form a 60-bit key is reduced (to 60

nm
), allowing for multiple

authentication attempts to be made within our 60-second
authentication-time constraint. We refer to this as multi-key
authentication. As we require an entity to authenticate reliably
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with probability Pauth = 1−10−6 within 60 seconds, having a
attempts results in Pauth−key = 1− a

√
10−6 for each individual

key. In turn, this lowers THD: To illustrate, Figure 6 also
depicts THD when selecting 3 bpi, where THD is based on
a = 1, 2 or 3 authentication attempts (keys). Note that THD

is decreased with increasing values of a.
So far, we have discussed THD for the MIT-Regular dataset,

of which the average heart rate is 68.3 BPM. As a higher heart
rate implies faster key generation, it may be possible to further
decrease THD as a function of the heart rate by increasing the
number of authentication attempts. In practice, an entity could
calculate the total time t required to obtain enough IPIs for
key generation, derive the possible number of authentication
attempts within our authentication-time constraint as a = 60

t
and base THD on a-multi-key authentication. To exemplify,
Figure 7 depicts THD for various heart rates, where keys are
generated using four bits per IPI. Note that a higher heart rate
results in a reduction in THD. This reduction in THD is most
noticeable when least-significant IPI-bit positions are included
in the key-bit selection.

Multi-key authentication does not only benefit THD: As
each key authenticates with a probability of 1 − a

√
10−6, we

may improve the average authentication time significantly. For
example, using nm = 2, 3 or 4 bpi results in an authentication
probability of 99.997%, 99.978% or 99.944% per key, while
requiring 1

nm
of the key-generation time when nm = 1 bpi.

Table IV presents the average time required to generate a key
for our used datasets, based on the number of bits selected.

TABLE IV: Average 60-bit-key-generation time in seconds.

Dataset Heart rate Bits per IPI (#)
(BPM) 1 2 3 4 5 6

MIT-Regular 68.3 52.7 26.3 17.6 13.2 10.5 8.8
MIT-Ectopic 81.7 44.1 22.0 14.7 11.0 8.8 7.3
MIT-Episode 86.4 41.7 20.8 13.9 10.4 8.3 6.9

RE-Rest 75.7 47.5 23.8 15.8 11.9 9.5 7.9
RE-Exercise 101.4 35.5 17.8 11.8 8.9 7.1 5.9

Obviously, both a higher heart rate and the use of more bits
per IPI lead to faster key generation and authentication time.

b) ImPI: Let us now discuss THD for an ImPI-based
key-generator. As with the IPI, each ImPI is calculated as
the difference between two heart beats, where the detection
of each heart beat is subject to VARis. Our experiments have
confirmed that the disparity between two keys is independent
from the number of considered heart beats per ImPI j,
i.e., THD is not directly affected by the used heart beats.
However, THD is indirectly affected, as increasing j increases
the average key-generation time by a factor j. This reduces
the number of keys which may be generated in the 60-second
authentication window, leading to an increase in THD given
the discussion on multi-key authentication above. Moreover,
certain key-bit selections may no longer be feasible: For
example, when j = 5 and nm = 3bpi, subjects from the
MIT-Regular would require an average key-generation time of
5 · 17.6 = 88 s (see Table IV), exceeding our authentication
time constraint.

3) Key Strength: Based on the Hk and THD, we may
now calculate the effective key strength KSeff . Here, we
calculate Hk based on the accumulation of the entropy of
individual I(m)PI-bits included in the key-bit selection (as
discussed in Section IV-B1) and base THD on both the bits
selected per I(m)PI, the average heart rate per dataset and
multi-key authentication. For all cases, KSeff is evaluated
for a 60-bit key and reliable authentication with probability
Pauth = 1 − 10−6 within 60 seconds4, as described in
Section IV-A1. First, we discuss KSeff for IPI-based keys,
after which we conclude with the results for ImPI-based keys.

a) IPI: Figure 8a depicts the key strength for the MIT-
Regular dataset, varying the IPI bits in the key-bit selection5.
Other datasets yield similar results and are discussed at the
end of this Section. First, let us consider KSeff when a single
key is generated using 1 bpi (in 52.7 seconds, see Table IV).
For bit position 0, we find a negative KSeff of −34.2 bits:
While bit 0 contains the most entropy (Hk = 53.6 bits),
it is also the most strongly affected by VARis (THD = 44
bits), resulting in a negative KSeff . As the entropy for the
4 least-significant IPI bits is roughly the same for the MIT-
Regular dataset (see Table III), while VARis decreases, we
find an increase in KSeff up to bit position 4, at which point
KSeff = 9.5 bits. From bit 4 onwards, KSeff once again

4As discussed in Section IV-B2, certain key-bit selections result in a key-
generation time significantly smaller than 60 seconds. In these cases, multiple
authentication attempts may be made within our authentication constraint of
60 seconds, which effectively decreases THD and, thus, increases KSeff .

5Recall from Section IV-A that a negative key strength (KSeff < 0)
indicates that an attacker is more likely to authenticate on their first attempt
than not, i.e., the generated keys provide practically no security.
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Fig. 8: Effective key strength KSeff for the MIT-Regular dataset using I(m)PI-based key generation. nm consecutive bits are
selected per I(m)PI, starting from the I(m)PI-bit position on the x-axis. (a) IPI-based key generation, where KSeff is based
on nm authentication attempts; (b) ImPI-based key generation where KSeff is based on a single authentication attempt by
setting j = nm, i.e., only one key is generated.

drops: While THD does decrease for more significant IPI bits,
the even steeper decrease in entropy results in negative KSeff

scores.
By using multiple bpi’s, it becomes possible to generate

multiple keys in the same time of generating a single key using
1 bpi – and, thus, perform multiple authentication attempts.
This results in an increase in KSeff as may be observed
from Figure 8a, which may be attributed to the effect of
multi-key authentication on THD. From all key-bit selections,
the maximum KSeff (22.7 bits) is obtained by generating
a key using IPI bits 2-4: In this case, THD is based on 3
authentication attempts, where a single key is generated in
17.6 seconds (see Table IV). That is, reliable authentication
using 3 keys is provided in 3 · 17.6 = 52.7 seconds.

Following the same methodology for all datasets, Table V
summarizes the best key-bit selections and resulting key
strengths for each dataset. For the MIT-* datasets, we find
a KSeff ≥ 19.1 bits. The MIT-Episode dataset yields a more
substantial KSeff = 29.2 bits compared to its counterparts,
attributed to the high Hi

eq which may be found in its most-
significant bits. Note that all MIT-* datasets exclude IPI-bits
0 and 1 from their key-bit selection. Conversely, it may be
stated that these sensors are oversampling (by a factor 4) and
that a sensor with a 1/4th the sampling rate (90 Hz) would
be more than sufficient. For the RE-Exercise dataset, we find
a maximum KSeff = 5.7 bits obtained using IPI bits 1-3,
significantly smaller than for the RE-Rest dataset (KSeff =
16.4 bits). The reduced entropy per IPI of these former subjects
prohibits the generation of strong security keys. Finally, the
average key-generation time for each individual key is equal
to or less than 17.4 seconds for all datasets, allowing over
99.9% of the authentication attempts to complete within this
time as discussed in the previous Section.

b) ImPI: In the previous Sections it was shown that by
increasing the interval size j, the entropy per ImPI is increased
(i.e., increasing Hk) while less keys may be generated in the
same time, increasing THD. To understand the key strength as
a function of j, let us first set the number of selected bits per
I(m)PI nm = j. In doing so, only one ImPI key is generated

TABLE V: Best key strength per dataset using the IPI.

Dataset bits Best KSeff Single key-
selected (bit) gen time (s)

MIT-Regular 2-4 22.7 17.6
MIT-Ectopic 2-4 19.1 14.7
MIT-Episode 2-6 29.2 8.3

RE-Rest 1-5 16.4 11.9
RE-Exercise 1-3 5.7 11.8

and we exclude the effect of multi-key authentication on
THD. Figure 8b depicts a representative example of this
evaluation for the MIT-Regular dataset. Similar to IPI-based
keys (Figure 8a), we find that the ImPI-key strength is limited
when the key-bit selection includes the least-significant ImPI
bits and is increased when including more significant bits.

We may now determine the most efficient solution – using
multiple IPI keys or a single ImPI key – by comparing the
results for IPI and ImPI-based keys in Figures 8a and b. When
the key-bit selection includes I(m)PI bit positions 0 or 1, we
find that the KSeff of an ImPI-based key is lower than that of
an IPI-based key. As discussed in Section IV-B1a, the entropy
of these bit positions is high even if j = 1 and is barely
increased as a function of j, i.e., Hk does not change sig-
nificantly. THD, on the other hand, is increased substantially
by lowering the number of generated ImPI-keys, resulting in
an overall reduction in KSeff . When the key-bit selection is
shifted to more significant bits, we find that an ImPI-based key
yields a stronger KSeff : While THD is increased by reducing
the number of generated keys, the substantial increases in
entropy due to the used bit positions yields a higher KSeff .
The strongest ImPI key (KSeff = 30.2 bits) is obtained
using ImPI bits 2-7 and provides reliable authentication within
52.7 seconds. Under the same authentication constraints, the
strongest IPI key (discussed before) has a more limited key
strength of KSeff = 22.7 bits. ImPI-based keys may, thus,
achieve a higher key strength than IPI-based keys.

Finally, by varying both j and the selection of bits (j
does not necessarily equal nm), we derive the best possible
KSeff for each dataset, as presented in Table VI. In line
with our previous conclusions, we find that the datasets which
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TABLE VI: Best key strength per dataset using the ImPI,
compared to the strongest IPI-based keys.

Dataset interval bits Best KSeff Single key-
size (j) selected (bit) gen time (s)

MIT-Regular 6 2-7 30.2 (+33%) 52.7 (3.0x)
MIT-Ectopic 6 2-6 26.6 (+39%) 52.9 (3.6x)
MIT-Episode 4 3-6 29.8 (+2%) 55.5 (6.7x)

RE-Rest 5 2-6 31.3 (+92%) 47.5 (4.0x)
RE-Exercise 8 2-6 24.9 (+3.4x) 56.8 (4.8x)

already contain a high degree of entropy do not benefit much
from using the ImPI, most notably the MIT-Episode dataset.
For datasets with lower entropy, however, we find substantial
increases in the key strength, up to KSeff = 24.9 bits (+3.4x
compared to the optimal IPI-bit selection) for the RE-Exercise
dataset. That is, when the entropy per IPI is limited, the ImPI
provides stronger security than IPI-based keys. It is interesting
to observe that when using the ImPI, all datasets shift their
key-bit selection to the more significant bits per ImPI, taking
advantage of the increase in Heq and minimal increase in
THD. Finally, note that while these keys are generated within
our authentication-time constraint of 60 seconds, we do find
a substantial increase in key generation time between 3-6.7x.
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VI. CONCLUSION

This paper has presented a thorough evaluation of the
security performance of a heart-beat-based-security system
which uses IPI as a source of entropy, considering the effects
of (limited) HRV, sensor-sampling frequencies, VARis and
multi-key authentication. In addition, we have introduced a
novel key-generator based on the Inter-multi-Pulse Interval
(ImPI), which considers the time interval between two non-
consecutive heart beats. It was shown that while successful
authentication may occur within 17.4 seconds for an IPI-based
key-generator, the effective key strength may be as low as
5.7 bits for subjects with limited HRV. This key strength was
successfully increased by up to 3.4x (+19.2 bits) through using
the ImPI-based key generation, at the cost of an increase in
key-generation time of 4.8x (from 11.8 sec to 59.8 sec). That
is, using the ImPI in key generation results in stronger keys
than using the IPI, given the same authentication time. In
order to maximize the security of heart-beat-based systems,
future security protocols should consider the possibility of
dynamically adjusting the key-generation settings, as revealed
by this work.
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