
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/286668868

Optimal mapping of inferior olive neuron simulations on the Single-Chip Cloud

Computer

Conference Paper · July 2014

DOI: 10.1109/SAMOS.2014.6893235

CITATIONS

6
READS

48

6 authors, including:

Some of the authors of this publication are also working on these related projects:

FabSpace 2.0 View project

How the inferior olive really works View project

Dimitrios Soudris

National Technical University of Athens

598 PUBLICATIONS   2,831 CITATIONS   

SEE PROFILE

Chris I De Zeeuw

Erasmus University Rotterdam

478 PUBLICATIONS   20,321 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Chris I De Zeeuw on 25 January 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/286668868_Optimal_mapping_of_inferior_olive_neuron_simulations_on_the_Single-Chip_Cloud_Computer?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/286668868_Optimal_mapping_of_inferior_olive_neuron_simulations_on_the_Single-Chip_Cloud_Computer?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FabSpace-20?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/How-the-inferior-olive-really-works?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitrios_Soudris?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitrios_Soudris?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitrios_Soudris?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chris_De_Zeeuw?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chris_De_Zeeuw?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Erasmus_University_Rotterdam?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chris_De_Zeeuw?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chris_De_Zeeuw?enrichId=rgreq-8babfcce39971cf78620ec7704a3dc12-XXX&enrichSource=Y292ZXJQYWdlOzI4NjY2ODg2ODtBUzozMjE3NTAyMjk4MTUyOTZAMTQ1MzcyMjY0MDcxOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Optimal Mapping of Inferior Olive Neuron
Simulations on the Single-Chip Cloud Computer

Dimitrios Rodopoulos, Giorgos Chatzikonstantis,
Andreas Pantelopoulos and Dimitrios Soudris

MICROprocessors and digital systems LABoratory, NTUA, Greece
{drodo, georgec, pantelopoulos, dsoudris}@microlab.ntua.gr

Chris I. De Zeeuw and Christos Strydis
Department of Neuroscience, Erasmus MC

Rotterdam, The Netherlands
{c.dezeeuw, c.strydis}@erasmusmc.nl

Abstract—Biologically accurate neuron simulations are in-
creasingly important in research related to brain activity. They
are computationally intensive and feature data and task paral-
lelism. In this paper, we present a case study for the mapping of a
biologically accurate inferior-olive (InfOli), neural cell simulator
on an many-core research platform. The Single-Chip Cloud
Computer (SCC) is an experimental processor created by Intel
Labs. The target neurons provide a major input to the cerebellum
and are involved in motor skills and space perception. We exploit
task- and data-partitioning, scaling the simulation over more than
40,000 neurons. The voltage- and frequency-scaling capabilities
of the chip are explored, achieving more than 20% energy savings
with negligible performance degradation. Four platform configu-
rations are evaluated and a mapping with balanced workload and
constant voltage and frequency is formally derived as optimal.

Keywords—Dynamic Frequency and Voltage Scaling, Inferior
Olive Neurons, Pareto Optimal, Single-Chip Cloud Computer

I. INTRODUCTION

In-vitro and in-vivo neuroscientific experiments are costly,
time-consuming and may require testing on animals. They are
also highly complex, often difficult to reproduce and offer lim-
ited tissue access. Hence, constructing and exploring realistic
simulations of neural networks on computing platforms is a
viable and useful alternative for neuroscientists [1], [2]. The
resulting discipline of neuroinformatics comprises a powerful
tool in the hands of the community. However, in order to
accurately simulate brain-cell activity, one has to properly cope
with various biological aspects, prominently a large neural-cell
population and also a complex connectivity scheme between
the simulated neurons1. Both attributes call for significant
computational resources with high inherent parallelism. Thus,
they are very much in-line with the multi-/many-core paradigm
observed in modern computer infrastructure trends [3], [4].

A wide variety of neuron models has been developed,
targeting different levels of detail [5], [6], [7], popular among
which are the time driven (extended) Hodgkin-Huxley models.
They are solved in a transient way and provide the voltage
response of neurons, given user-defined current stimuli. Plat-
forms with many execution units are typically being selected
to solve these models, given their inherent data parallelism [8],
[9], [10]. Despite the plethora of models and execution plat-
forms, there has been reduced emphasis on systematically
optimizing the model execution on a many-core platform.
Given the capabilities of modern computing systems, the

1The terms neuron and (neural) cell will be used interchangeably.

degrees of freedom that are available to the community allow
an aggressive exploration of the performance vs. quality-cost
trade-off. This enables cost-conscious execution of biologically
accurate neural models on multi-/many-core systems. There
is significant potential in using such systematic approaches,
given the magnitude and energy budget [11] of computing
infrastructure currently employed for brain modeling [12].

In the current paper, we study the performance vs. quality-
cost trade-off of the InfOli simulator [13], [14] on a many-
core chip. The SCC experimental processor [15] is a 48-
core “concept vehicle” created by Intel Labs as a platform
for many-core software research. It features Dynamic Voltage
and Frequency Scaling (DVFS) and on-die message passing. A
systematic Design Space Exploration (DSE) produces the opti-
mal application mapping. We prove that a symmetric mapping
(i.e. identical workload per core) with static voltage/frequency
configuration is optimal in terms of performance and energy.
The current paper is organized as follows: Section II discusses
prior art. In Section III we present attributes of the target
platform and application. In Section IV we partition the InfOli
simulator and propose power management strategies. The
derived design space is explored in Section V to derive optimal
mapping. Finally, conclusions are drawn in Section VI.

II. RELATED WORK & MOTIVATION

With respect to simulating biological phenomena, neural-
cell models encompass different degrees of accuracy [16].
An exhaustive presentation of neuromodeling approaches is
beyond the scope of this paper, however, we briefly intro-
duce some representative prior art. According to O’ Reilly et
al. [17], there are different “hierarchical levels of analysis”
to confront the brain’s extreme complexity. They mention
that one could ignore the “underlying biological mechanisms
of cognition”, focusing instead on patterns and algorithmic
computations the brain performs when undertaking a task.
They focus on neural networks, using methods from the field
of artificial intelligence to explore the process of human
thinking. Other approaches are really abstract, as in the case of
traditional neural networks [18]. In this case, a set of neurons
is abstracted by processing elements with different weights,
the values of which are combined to give a single output. This
approach is useful for solving non-linear control problems. In a
process that is called training, the weights of each processing
element are selected and the desired output for typical use
cases is derived. However, this approach exposes almost no
biological information of the considered “neurons”.



Tile Tile Tile

TileTile

Tile Tile

Tile

Tile
R

Tile
R

R

R

Tile
R

Tile
R

Tile

R
Tile

R
Tile

Tile
R

R

R
Tile

R
Tile

Tile
R

R

R
Tile

R
Tile

Tile
R

R

R
Tile

R

Tile
R

R

R

R

M
C

D
IM

M

M
C

D
IM

MM
C

D
IM

M

M
C

D
IM

M

Voltage 

Island

Frequency 

Island

Memory Island

(a) The frequency, voltage and memory islands of the SCC

t1

N
ei

gh
bo

r 
C

el
ls

t0 t2

N
ei

gh
bo

r 
C

el
ls

Duration of Simulated Brain Activity

Cel
l p

opula
tio

n

Const. Time Step

(b) Illustration of the InfOli simulator runtime

Fig. 1: High level view of the target platform and the target application that are discussed in this paper

In comparison to state-of-the-art approaches, the model
that is used in our work [13], [14] is of higher accuracy
from a biological perspective. It is an extended version of the
Hodgkin-Huxley [5] model, which captures the potential and
current of (neural) cell compartments, based on a juxtaposition
of biological parameters with the electrical characteristics of an
equivalent circuit. The resulting model falls under the Spiking-
Neural Network (SNN) class of models [19], [20] allowing
transient inspection of neural activity. Biologically accurate
simulation of neural activity requires considerable computa-
tional resources. Execution on a set of processing elements
is a typical course of action. Prior art features examples
using Field-Programmable Gate Arrays (FPGAs) [8], multi-
processors [10] or Graphics Processing Units (GPUs) [9].
Many of these approaches target real-time simulation, at the
cost of limited cell populations. In the current paper, we deviate
from this practice and aim to scale the simulation up to a
very large neuron population in an energy-conscious way. A
very important differentiator of the current paper from prior art
is the formal treatment of the available design-time options.
Each neuron simulation presented in this paper is assessed
in terms of performance and energy budget. The majority of
related works focuses entirely on the computational efficiency
of neural simulations [21], rather than on the capabilities
of the target platform. In our work, we maintain a system-
level viewpoint and derive different combinations of mapping
and power-management, creating a design space of platform
configurations. This space is formally treated to identify the
optimal platform configurations for the InfOli simulator.

III. TARGET PLATFORM AND APPLICATION

This Section discusses the mapping of the InfOli simulator
on the SCC chip. We briefly present the target platform (Sub-
section III-A). The run-time of the simulator is discussed and a
profiling of the execution time is provided (Subsection III-B).
Subsection III-C discusses neuron inter-connectivity and for-
mulates a probabilistic model for neuron communication.

A. Overview of the SCC Platform

The Intel SCC [15] is a homogeneous, many-core chip with
48 cores, organized in pairs called tiles, which are intercon-
nected through a mesh network (Figure 1a). Each tile consti-

tutes a separate frequency island. Four tiles create an individual
voltage island. The default configuration assigns each quarter
of the chip to a Dual Inline Memory Module (DIMM) through
a Memory Controller (MC). Each core of the SCC uses a low-
level Message-Passing Buffer (MPB) used for the exchange
messages with other cores. In the context of the current paper,
each core is booted with a custom Linux distribution. The
SCC chip is installed on a board that communicates with
a Management-Console Personal Computer (MCPC) through
Ethernet (for power monitoring) and PCIe (for disk access)
connections. The /shared directory is common between the
MCPC and the SCC cores, thus enabling exchange of files
and executables. Source code is written and cross-compiled
on the MCPC and executed on the SCC. We use the default
programming library of the SCC, called RCCE, for message
passing and DVFS [22]. Tasks are dispatched from the MCPC
to the SCC and the total chip power can be recorded from the
SCC Board Management Controller (BMC) over telnet [23].

B. Overview of the InfOli Simulator Runtime

For a given cluster of InfOli neurons, the simulator calcu-
lates the membrane potential of each cell under the influence
of external and internal input stimuli (currents). The simulator
is transient (i.e. time driven) with a constant step equal to
50 µs. The application flow during simulation steps t0, t1, t2, ...
can be seen in Figure 1b. A very important element is the
inter-connectivity between the cells. In order to realistically
calculate the potential of each cell, the simulator needs to
consider the voltage levels of neighboring cells, to which
the former cell is connected. As a result, the degrees of
freedom of the simulation, which should also be specified by
the user before the simulation starts, are: (i) the size of the
cell network, (ii) the duration of the simulated brain activity,
(iii) the external input currents to each cell as well as the
desired (iv) interconnectivity scheme. The simulator solves
the model for each of the simulated neurons, assuming three
compartments per cell [24]: (i) The dendrite compartment
exchanges information with other InfOli cells and receives the
input current at the beginning of each simulation step. (ii) After
input current stimuli have been received from the environment,
the soma compartment performs the most computationally
intensive part of the neuron. (iii) The action potential of the
axon component constitutes the “output” of each neuron cell.



31.7 31.8 31.9 32 32.1
0

5

10

15

20

25

Percentage of Execution (%)

F
re

q
u

e
n

c
y
 o

f 
O

c
c
u

rr
e

n
c
e

 (
p

.u
.)

Average=31.8971%

(a) Profiling of the dendrite compartment

44.8 45 45.2 45.4 45.6
0

5

10

15

20

25

30

Percentage of Execution (%)

F
re

q
u

e
n

c
y
 o

f 
O

c
c
u

rr
e

n
c
e

 (
p

.u
.)

Average=45.0444%

(b) Profiling of the soma compartment

22.9 23 23.1 23.2 23.3
0

10

20

30

40

Percentage of Execution (%)

F
re

q
u

e
n

c
y
 o

f 
O

c
c
u

rr
e

n
c
e

 (
p

.u
.)

Average=23.0585%

(c) Profiling of the axon compartment

Fig. 2: Profiling on a single SCC core (at default frequency/voltage setting), to extract timing information for each compartment

0
10

20

10
0

10
1

0

0.2

0.4

r (p.u.)
σ (p.u.)

P
c
o

n
n

e
c
ti
o

n
 (

p
.u

.)

Fig. 3: Connection probability according to Equation 1

The simulator is a system with memory, since the state of
each compartment is reused in the next simulation iteration.
We start from a single-threaded implementation that includes
these three cell compartments for a single InfOli neuron cell
and perform a profiling experiment to derive the workload
distribution between the three compartments. The results are
shown in Figure 2 for 100 runs of the same simulation for
6 seconds of brain activity simulated on a single SCC core
with constant voltage and frequency. The UNIX function
getttimeofday has been used to record execution times.
Immediately, we verify that the soma compartment is the most
computationally intensive part of the simulator’s runtime. The
axon compartment exhibits the shortest processing times. The
dendrite component lies in the middle. However, given that it
is related to inter-neuron communication, we expect that it will
occupy a large fraction of the overall execution time in case
we employ a more complicated interconnectivity scheme.

Pconnection = f (r, σ) =
1

σ
√
2π
e−

r2

2σ2 , where r > 0 (1)

C. Replicating Neuron Inter-Connectivity

In order to realistically simulate neuron behavior, it is
important to replicate not only the computation but also the
inter-connection between neurons. Initially, we assume that the
simulated neurons are organized in a two dimensional mesh.
Then, we create inter-neuron connections in a probabilistic
way, based on the probability density function of the normal
distribution. Thus, assuming two neurons, at a distance r, the

10
0

10
1

10
210

310
410

5
0

50

σ (p.u.)No. of Neurons (p.u.)A
v
g
 C

o
n
n
e
c
ti
o
n
s
 /
 C

e
ll 

(p
.u

.)

Increasing Decreasing

Fig. 4: Drop in mean number of connections after a certain σ.

probability of their being connected is given by Equation 1,
where σ describes the dispersion of inter-neuron connections
across the mesh (Figure 3). In the context of the current paper,
we assume a two dimensional mesh of neurons, hence r =√
x2 + y2, where x and y are relative cartesian coordinates.

Both r and σ are quantified in numbers of neurons (p.u).

It should be noted that, for a specific network size, an
increasing σ does not necessarily increase the average number
of connections per neuron. This is highlighted in Figure 4: Up
to a specific value of σ, the average number of connections
is indeed increasing. However, after that point, the average
number of connections is decreasing, since the connection
spread is very wide for the target finite neuron inventory.

IV. SIMULATOR MAPPING & POWER MANAGEMENT

A. Partitioning the InfOli Simulator

1) Data Partitioning: If we imagine a plane of InfOli
neurons, the most intuitive mapping option of the respective
model would be to assign a subset of the cell population to
each of the cores of a many-core system. This effectively
represents data partitioning of the simulation and it will be
the first mapping strategy explored in this paper. We shall
only instantiate network sizes that are multiple of 48 to the
SCC chip, in order to maintain a homogeneous distribution of
workloads across the SCC cores. This mapping is illustrated
in Figure 5a. With respect to inter-cell communication, cells
assigned to the same core communicate through its private
memory. Cells assigned to different cores communicate over
the MPB with the RCCE message passing commands [22].



DendriteDendriteDendrite
Soma

Soma
Soma

Axon

Corei

48 Cores

(a) Data partitioning, where i = 0, 1, 2, ..., 47

DendriteDendriteDendrite

Corei-1

Soma
Soma

Corei

Soma
Axon

Corei+1

16 Cores 16 Cores 16 Cores

(b) Combined data and task partitioning, where i = 1, 4, ..., 46

Fig. 5: The two mapping options of the InfOli neuron cell
simulator on the SCC chip that are discussed in this paper

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

Number of Neurons (p.u.)

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 Baseline

Data Partitioning

Task & Data Partitioning

Fig. 6: Initial benchmarking (Vdd =1.1 V, f = 533 MHz,
σ = 1); baseline represents execution on a single SCC core.

2) Task & Data Partitioning: From Figure 2, we can
approximate the relative execution times of the three neuron
compartments. The soma requires on average twice the exe-
cution time, in comparison to the dendrite and axon. Thus,
it is reasonable to initially split the simulation with respect
to neuron compartments. Assigning the simulation of each
compartment to a different core effectively constitutes task
partitioning. With a total of 48 available cores, we additionally
perform data partitioning, thus implementing combined task
and data partitioning on the InfOli neuron simulator, illus-
trated in Figure 5b. We assign each compartment to one core,
thus an InfOli neuron requires a triplet of cores. Each core
simulates one compartment of N÷16 cells, where N is the size
of cell network (multiple of 16, to avoid workload imbalance).

3) Initial Findings: In Figure 6, we see the execution times
for the two considered partitioning schemes. Both have been
verified against the Baseline (execution on a single SCC core)
and show no accuracy degradation. We achieve a constant
speedup of about an order of magnitude. Combined data
and task partitioning exhibits a lower speedup. This is to be
expected, due to the increased inter-core traffic required for
both inter-cell and inter-compartment communication applying
to this partitioning: the execution time dedicated to message
passing time is larger in the combined task and data partition-
ing case (Figure 7b), compared to data partitioning (Figure 7a).

10
0

10
1

10
210

310
410

5
0

5

10

x 10
4

σ (p.u.)No. of Neurons (p.u.)

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
 (

s
)

(a) Data Partitioning

10
0

10
1

10
210

310
410

5
0

5

10

x 10
4

σ (p.u.)No. of Neurons (p.u.)

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
 (

s
)

(b) Task & Data Partitioning

Fig. 7: Impact of non-regular neuron inter-connectivity (based
on Equation 1) on the message passing overhead. The SCC
chip is constantly trained at Vdd = 1 V and f = 533 MHz.

800 

MHz

533 

MHz

axon()

real Vdd = 1.1 V = const.

dendrite(), 

soma()

dendrite(), 

soma()

id
e

a
l 

D
V

F
S

V
d

d
 =

 0
.8

 V

id
e

a
l 

D
V

F
S

V
d

d
 =

 1
.1

 V

axon()

Fig. 8: The DFS FSM for the data partitioned InfOli simulator.
Voltage values for the ideal DVFS scheme are also highlighted.

B. Power Management of the InfOli Simulator

As a transient InfOli simulation contains more cells, the
duration of a simulation may exceed tens of hours. Thus, it
attractive to explore power or energy minimization techniques.
The SCC enables the adjustment of voltage and frequency at
a granularity illustrated in Figure 1a2. It also allows transient
monitoring of the total power consumed by the SCC chip.
For the rest of this paper, and without loss of generality, we
deactivate all simulator interim output messages. Thus, the
simulator reports only the final status of the simulated neurons.

1) Data Partitioning: Based on the partitioning option of
Subsubsection IV-A1, a power-management strategy should be
applied that is global across the SCC chip. As the profiling

2We note that prior work has stated that a constant maximum frequency
is not necessarily the most energy efficient [25]. However, confirmation or
rebuttal of this statement falls beyond the scope of the current paper.



10
1

10
2

10
3

10
4

10
5

0

2000

4000

6000

8000

10000

12000

Number of Neurons (p.u.)

T
o

ta
l E

xe
cu

tio
n

 T
im

e
 (

s)

 

 

800 MHz @ 1.1 V
DFS

(a) σ = 1

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10
x 10

5

Number of Neurons (p.u.)

T
o

ta
l E

n
e

rg
y 

(J
)

 

 

800 MHz @ 1.1 V
DFS

(b) σ = 1

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Number of Neurons (p.u.)

T
o

ta
l E

n
e

rg
y 

(a
.u

.)

 

 

800 MHz @ 1.1 V
Ideal DVFS

(c) σ = 1 – Ideal DVFS Case

10
0

10
1

10
2

10
3

0

1000

2000

3000

4000

σ (p.u.)

T
o

ta
l E

xe
cu

tio
n

 T
im

e
 (

s)

 

 

800 MHz @ 1.1 V
DFS

(d) 4800 Neurons

10
0

10
1

10
2

10
3

0

1

2

3

4
x 10

5

σ (p.u.)

T
o

ta
l E

n
e

rg
y 

(J
)

 

 

800 MHz @ 1.1 V
DFS

(e) 4800 Neurons

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

Number of Neurons (p.u.)

T
o

ta
l E

n
e

rg
y 

(a
.u

.)

 

 

800 MHz @ 1.1 V

Ideal DVFS

(f) 4800 Neurons – Ideal DVFS Case

Fig. 9: Performance and quality cost analysis for the data partitioning of the InfOli simulator

information has revealed (Figure 2), the soma compartment re-
quires roughly twice the execution time taken up by the axon or
dendrite compartments. The dendrite component is a bit faster
in comparison to the soma, however given a more complicated
inter-connectivity scheme, its computational overhead is bound
to increase. If we were to be conservative with the clock
frequency of each core, an interesting opportunity would arise:
Given the Dynamic-Frequency-Scaling (DFS) capabilities of
the SCC (at tile granularity), we can manipulate the frequency
of the cores depending on the compartment that they are
simulating in each case. We chose to alternate between the
533 MHz and 800 MHz clock frequencies, by properly setting
the frequency divider of each tile. The Finite-State Machine
(FSM) of Figure 8 is illustrating this concept. We avoid voltage
manipulation at runtime, since the SCC voltage regulators are
less responsive than the frequency dividers [26]. Since both
frequencies need to be supported at runtime, the voltage supply
is set at the minimum of 1.1 V. We also test a constantly high
clock (800 MHz) with the lowest allowed voltage (1.1 V).

We measure the execution time from the MCPC and total
energy by signaling the BMC of the chip3. Each measure-
ment session covers 6 second simulation of brain activity,
various cell populations (Figure 9a and 9b) and certain inter-
connectivity dispersion (Figure 9d and 9e). A constant, high
frequency is a clearly the preferable choice. As expected,
the DFS option is worse both in terms of performance and
energy. In case the voltage regulator could be of the same
responsiveness as the frequency divider, we could witness

3Prior art indicates instabilities in the power measurement of the SCC [27].
Considering that such fluctuations are in the vicinity of a 1 W and given the
averaging-out of numerical integration for energy calculation, finer granularity
of SCC power measurement is beyond the scope of the current paper.

actual energy benefits. Assuming such ideal DVFS, following
the FSM of Figure 8, we can estimate the total energy, using
the execution times of Figures 9a and 9d, as well as the square
law of power consumption P = cfV 2

dd, where c is a parameter
for the switching capacitance of the chip [28]. Given that this
is unknown for the SCC, we present the energy estimation
in arbitrary units, normalized for the maximum energy value.
The result are shown in Figures 9c and 9f. In the case of the
neuron count sweep (Figure 9c), we can clearly see how DVFS
trades off a portion of performance for a more energy efficient
execution (by a maximum of 20%). In the case of the inter-
connectivity sweep (Figure 9f). However, given that frequency
manipulation imposes a constant overhead (Figure 9d) and the
total execution time is upper-bounded by a maximum of inter-
connectivity (Subsection III-C), the ideal case of DVFS yields
no energy benefits whatsoever. With a higher degree of inter-
connectivity temporal overhead (e.g. larger neuron network)
we may have had energy benefits in the case of ideal DVFS.

2) Task & Data Partitioning: In the case of combined
task and data partitioning (discussed in Subsubsection IV-A2),
we can have different power-management strategies per core
since the cores are executing different tasks. We isolate tasks
that simulate specific compartments and map them to sepa-
rate voltage islands of the chip [29]. Based on the profiling
information collected previously, voltage islands simulating
somata or dendrites need to operate at twice the frequency
of voltage islands simulating axons. Dendrites are assigned
to high-frequency execution due to the potential for intensive
inter-core communication, in case complex inter-connectivity
schemes are simulated. Hence, cores that need to run “fast”
will be set to 800 MHz and “slow” cores will run at 533 MHz.
Frequency scaling needs to be performed only once before the



Tile Tile Tile

TileTile

Tile Tile

Tile

Tile
R

Tile
R

R

R

Tile
R

Tile
R

Tile

R
Tile

R
Tile

Tile
R

R

R
Tile

R
Tile

Tile
R

R

R
Tile

R
Tile

Tile
R

R

R
Tile

R

Tile
R

R

R

R

M
C

D
IM

M

M
C

D
IM

MM
C

D
IM

M

M
C

D
IM

M

Dendrites SomataDendrites

Axons AxonsSomata

Fig. 10: SVFS for the combined task and data partitioning

simulation begins. That way, we have the chance to (statically)
“train” the SCC system to the appropriate voltages. “Fast”
voltage islands will be configured at 1.1 V (minimum voltage
setting to support a 800 MHz clock) and “slow” voltage islands
will run at 0.8 V (minimum voltage that supports a 533
MHz clock). We refer to this power management as Static
Voltage and Frequency Scaling (SVFS), shown in Figure 10.
Given the different frequencies and voltages used by the
SVFS setting, it is important to average out the stressing of
the cores of the SCC (i.e. avoid hot spots or heterogeneous
aging across the many-core chip). Addressing this issue is
beyond the scope of the current paper, however solutions have
been already proposed in the literature [30]. We also test
a globally high clock scheme, where all islands are trained
to 800 MHz and 1.1 V. In a second set of measurements,
we present the execution time and total energy for various
neuron populations (Figure 11a and 11b) and degrees of inter-
connectivity (Figure 11c and 11d), assuming the same 6 second
brain activity. Apparently, SVFS is a very successful power
management scheme for combined task and data partitioning.
It saves significant energy (more than 20%) at a negligible
performance degradation. Especially for 48,000 neurons with
σ = 1, the performance is almost similar to the case of
uniform power management. Finally, in Figures 9d–9e for
data partitioning and Figures 11c–11d for combined task and
data partitioning, we see that the performance and quality cost
of the simulator drops after a certain σ value. This is to be
expected, if we consider the probabilistic connectivity model
of Equation 1. In Figure 4 we have highlighted that when the
neuron inter-connection spread is very wide for the target cell
population, the amount of formed connections drops. Thus,
the inter-neuron communication (and hence cores of the SCC)
reduces, with a consequent drop in execution time and energy.
In any case, SVFS provides energy benefits around 15% in the
case of combined task and data partitioning. At the same time
negligible performance degradation is created to the simulator.

V. FORMAL TREATMENT OF THE DESIGN SPACE

The variety of design-time choices that can be made
when mapping the InfOli simulator on the SCC create a
set of system configurations. Each one comes as a different
blend of task/data partitioning and represents a specific power-
management strategy. Based on Section IV, the available
configurations are summarized as: {800 MHz @ 1.1 V – Task

10
1

10
2

10
3

10
4

10
5

0

5000

10000

15000

Number of Neurons (p.u.)

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

s)

 

 

800 MHz @ 1.1 V
SVFS

(a) Task & Data Partitioning: σ = 1

10
1

10
2

10
3

10
4

10
5

0

5

10

15
x 10

5

Number of Neurons (p.u.)
T

o
ta

l E
n
e
rg

y 
(J

)

 

 

800 MHz @ 1.1 V
SVFS 23.4%

Energy
Saving

(b) Task & Data Partitioning: σ = 1

10
0

10
1

10
2

10
3

1000

2000

3000

4000

5000

σ (p.u.)

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

s)

 

 

800 MHz @ 1.1 V
SVFS

3.5% Performance
Degradation

(c) Task & Data Partitioning: No. of Simulated Neurons = 4800

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4
x 10

5

σ (p.u.)

T
o
ta

l E
n
e
rg

y 
(J

)

 

 

800 MHz @ 1.1 V
SVFS

16.9%
Energy
Saving

(d) Task & Data Partitioning: No. of Simulated Neurons = 4800

Fig. 11: Performance and quality cost analysis of the combined
task and data partitioning of the InfOli simulator



& Data Partitioning, SVFS – Task & Data Partitioning, 800
MHz @ 1.1 V – Data Partitioning, DFS – Data Partitioning}.
Each configuration can be evaluated in terms of certain cost
metrics, such as execution time or consumed energy, producing
a single design point. This set of points creates a design space
which can be treated formally to derive Pareto-optimal [31]
design points. It is noted that the hypothetical exploration of
Figures 9c and 9f is not included in the DSE presented here.

The target neuron network size, the inter-connectivity
scheme and the duration of simulated brain activity are the
independent variables of this exploration. Initially, values for
these three variables are defined. Then, a set of n available
design points is identified. Each design point Pi is evaluated
against cost metrics xj (Pi), where j = 1, 2, ...,m. The front
of Pareto optimality is a set V with all the design points Pi

that satisfy Equation 2, for n design points and m cost metrics:

xj (Pi) ≤ xj (Pk) ,

∀ k = 1, 2, ..., n and ∀ j = 1, 2, ...,m
(2)

The derivation of the Pareto front can be automated using
algorithms that calculate minima of a set of vectors [32]. To
accelerate exploration, the Pareto front can be pruned further
if constraints are imposed on cost metrics. For example, in
real-time InfOli-neuron simulation, the total execution time
should not exceed the duration of simulated brain activity. To
perform the aforementioned methodology, knowledge of the
InfOli-simulator design points is required. This can originate
from a extensive benchmarking session at design time. In order
to substantiate the proposed DSE methodology, we identify
the Pareto front of optimal InfOli-simulator mappings for two
different cases. The duration of simulated brain activity is
assumed constant in both cases, equal to 6 seconds. In the first
case we assume a constant σ = 1 and go through different sizes
of neuron network. In the second case, we fix the number of
neurons to 4,800 cells and make a sweep of possible σ values.
The results are shown Figures 12a and 12b. In both cases, data
partitioning at 800 MHz / 1.1 V is solely derived as optimal.

From the above findings, we see that a symmetric mapping
is preferable than the introduction of inter-core load imbalance
through task partitioning. Even if the latter leads to Vdd reduc-
tion for certain voltage islands (SVFS–Subsubsection IV-B2),
it is much preferable to maintain a symmetric approach, where
all cores executed the same workload at constant voltage
and frequency. This is compatible with the Single Program
- Multiple Data (SPMD) programming style of the SCC [22].
The explored DFS scheme cannot, by nature, provide energy
benefits. However, it can reveal an upper bound to the energy
benefits of a highly responsive (though, not materialized in
the case of the SCC) DVFS utility (see Figures 9c and 9f).
Finally, we can strongly motivate that in order to provide
performance vs. quality cost optimality guarantees, we need to
perform such a DSE (a general view is provided in Figure 13).
The user (i.e. a neuroscientist) specifies the neuron network
size, interconnectivity and duration of the simulation. Based
on the DSE, the developer (i.e. the platform programmer)
adapts the user model to a Pareto-optimal configuration for the
target many-core system (i.e. mapping and power-management
options). Thus, any experiments of the user are bound to
occupy the target platform in a Pareto-optimal way.

10
0 10

1 10
2 10

3 10
4

10
010

110
210

310
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

No. of Neurons (p.u.)Execution Time (s)

T
o
ta

l 
E

n
e
rg

y
 (

J
)

(a) Pareto points for σ = 1 and various neuron network sizes

10
0 10

1 10
2 10

3 10
4

10
010

110
210

310
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

σ (p.u.)Execution Time (s)

T
o
ta

l 
E

n
e
rg

y
 (

J
)

(b) Pareto points for 4,800 neurons with various inter-connectivity densities

Fig. 12: Two DSE results for the InfOli simulator (constant σ
and constant number of neurons) for 6 seconds of brain activity

Brain Activity 

Duration

Size of Cell 

Network DSE Results

Connectivity 

Scheme

User 
(Neuroscientist)

Developer
(platform programmer)

User Model

E
n

e
rg

y

Execution Time

Pareto Optimal 

Platform Configuration

Optimal Platform 

Utilization

Fig. 13: DSE methodology for the optimal mapping of the
InfOli neuron simulator on a many-core platform



VI. CONCLUSION

In this paper, we have presented a thorough DSE for
the mapping of a biologically accurate neuron simulator on
an industrial grade many-core platform. The simulator of
our choice is based on a transient, time driven model for
the inferior-olive neurons, which are of major importance
for human sensorimotor control. The target platform is the
Single-Chip Cloud Computer, developed by Intel Labs. In the
feasibility study presented herein, we have explored different
partitioning schemes, based on data and combined task-and-
data partitioning. Also, we explored the power-management
options of the chip, implementing both Dynamic Frequency
Scaling and Static Voltage and Frequency Scaling. Combi-
nations of mapping and power-management options create
a design space of different points. The quality cost of the
simulation along with the sensitivity of the Pareto space in
problem parameters, motivate a systematic treatment of this
design space, in order to guarantee truly optimal utilization of
the platform. A Pareto optimality problem has been formulated
to extract such optimal platform configurations. The findings of
the DSE reveal that a symmetric configuration, with identical
workload-per-core and a global power management policy is
optimal for the mapping of the InfOli simulator on the SCC.

ACKNOWLEDGMENT

The SCC is available under an MTA between ICCS/NTUA
and Intel Corporation. This work is partially supported by the
HiPEAC 3 EU ICT-287759 Collaboration Grant and by the
FP7-287611-DeSyRe and FP7-612069-HARPA EU projects.

REFERENCES

[1] Davison A.P. et al., “Trends in programming languages for neuroscience
simulations,” Frontiers in Neuroscience, vol. 3:3, pp. 374–380, 2009.

[2] Zaytsev Y.V. et al., “Increasing quality and managing complexity in
neuroinformatics software development with continuous integration,”
Frontiers in Neuroinformatics, vol. 3:3, pp. 6–31, 2013.

[3] Fuller, S.H. et al., “Computing Performance: Game Over or Next
Level?” Computer, vol. 44, no. 1, pp. 31–38, 2011.

[4] H. Markram, “The Blue Brain Project,” Nature Reviews Neuroscience,
vol. 7, no. 2, pp. 153–160, 2006.

[5] Hodgkin, A. L. et al., “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” Journal of
Physiology, vol. 117, no. 4, 1952.

[6] E. Izhikevich, “Simple model of spiking neurons,” Neural Networks,
IEEE Transactions on, vol. 14, no. 6, 2003.

[7] I. Segev, Ed., Methods in Neuronal Modeling - 2nd Edition: From Ions
to Networks. A Bradford Book, 1998.

[8] Thomas, D. B. et al., “FPGA Accelerated Simulation of Biologically
Plausible Spiking Neural Networks,” in FCCM, 2009, pp. 45–52.

[9] Yamazaki, T., “GPU-based implementation of a cerebellar spiking
network model for realtime robot control,” in 21st Annual Conference
of the Japanese N.N. Society, 2011.

[10] Jin, X., “Efficient modelling of spiking neural networks on a scalable
chip multiprocessor,” in IJCNN, 2008.

[11] Subramaniam, B. et al., “The Green Index: A Metric for Evaluating
System-Wide Energy Efficiency in HPC Systems,” in IPDPSW, 2012.

[12] École Polytechnique Fédérale de Lausanne. (2012, June) The Blue Brain
Project – Main Components of the Infrastructure.

[13] De Gruijl, J. R. et al., “Climbing Fiber Burst Size and Olivary Sub-
threshold Oscillations in a Network Setting,” PLoS Comput Biol, 2012.

[14] Bazzigaluppi, P. et al., “Olivary subthreshold oscillations and burst
activity revisited,” Frontiers in Neural Circuits, vol. 6, no. 91, 2012.

[15] Howard, J. et al., “A 48-Core IA-32 Processor in 45 nm CMOS
Using On-Die Message-Passing and DVFS for Performance and Power
Scaling,” IEEE JSSC, vol. 46, no. 1, pp. 173–183, 2011.

[16] Dayan, P., Levels of Analysis in Neural Modeling. Wiley, 2006.
[17] O’Reilly, R. et al., Computational Explorations in Cognitive Neuro-

science: Understanding the Mind by Simulating the Brain. Bradford.
[18] Nguyen, D.H. et al., “Neural networks for self-learning control sys-

tems,” Control Systems Magazine, IEEE, vol. 10, no. 3, 1990.
[19] Bishop, C. M. et al., Ed., Pulsed Neural Networks. Bradford, 2001.
[20] Gerstner, W. et al., Spiking Neuron Models. Cambridge University

Press, 2002.
[21] Agudelo-Toro, A. et al., “Computationally efficient simulation of elec-

trical activity at cell membranes interacting with self-generated and
externally imposed electric fields,” Jour. of Neural Engineering, 2013.

[22] Mattson, T.G. et al., “The 48-core SCC Processor: the Programmer’s
View,” in Int. SC Conf., nov. 2010, pp. 1 –11.

[23] Intel Labs, “The SCC Platform Overview,” Tech. Rep. Rev 0.7, 2010.
[24] De Zeeuw, C. I. et al., “Spatiotemporal firing patterns in the cerebel-

lum,” Nature Review Neuroscience, vol. 12, no. 6, pp. 327–344, 2011.
[25] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis

and benchmarking of the intel scc,” in Cluster Computing (CLUSTER),
2011 IEEE International Conference on, Sept 2011, pp. 139–149.

[26] Intel Labs, “The SCC Programmer’s Guide–0.75,” Tech. Rep., 2010.
[27] Bakker, R. et al., “Emulating asymmetric mpsocs on the intel scc many-

core processor,” in PDP–Euromicro, Feb 2014, pp. 520–527.
[28] D. Soudris, C. Piguet, and C. Goutis, Eds., Designing CMOS Circuits

for Low Power. Springer, 2002.
[29] “Using the RCCE Power Management Calls – Revision 1.1,” Intel

Corporation, Tech. Rep., September 2011.
[30] Karpuzcu, Ulya R. et al., “The BubbleWrap many-core: popping cores

for sequential acceleration,” in MICRO, 2009, pp. 447–458.
[31] Geilen, M. et al., “An Algebra of Pareto Points,” Fundam. Inf., vol. 78,

no. 1, pp. 35–74, Jan. 2007.
[32] Kung, H. et al., “On Finding the Maxima of a Set of Vectors,” J. ACM,

vol. 22, no. 4, pp. 469–476, Oct. 1975.

View publication statsView publication stats

https://www.researchgate.net/publication/286668868

	Introduction
	Related Work & Motivation
	Target Platform and Application
	Overview of the SCC Platform
	Overview of the InfOli Simulator Runtime
	Replicating Neuron Inter-Connectivity

	Simulator Mapping & Power Management
	Partitioning the InfOli Simulator
	Data Partitioning
	Task & Data Partitioning
	Initial Findings

	Power Management of the InfOli Simulator
	Data Partitioning
	Task & Data Partitioning


	Formal Treatment of the Design Space
	Conclusion
	References

