
> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

1

  
Abstract—Simulation of brain neurons in real-time using 

biophysically-meaningful models is a pre-requisite for 
comprehensive understanding of how neurons process 
information and communicate with each other, in effect 
efficiently complementing in-vivo experiments. State-of-the-art 
neuron simulators are, however, capable of simulating at most 
few tens/hundreds of biophysically accurate neurons in real-time 
due to the exponential growth in the inter-neuron communication 
costs with the number of simulated neurons. In this paper, we 
propose a real-time, reconfigurable, multi-chip system 
architecture based on localized communication, which effectively 
reduces the communication cost to a linear growth. All parts of 
the system are generated automatically, based on the neuron 
connectivity scheme. Experimental results indicate that the 
proposed system architecture allows the capacity of over 3000 to 
19200 (depending on the connectivity scheme) biophysically 
accurate neurons over multiple chips.  

Index Terms—Neuron network, biophysically accurate neuron 
simulation, multi-chip data-flow architecture. 

I. INTRODUCTION 

ONTINIOUS neuroscientific progress gradually led to the 
realization of mathematical models of the neuron cells 

and their intricate networks [1]-[2]; realistic models, which 
simulate biological behavior with a large level of accuracy, as 
in the case of spiking neural networks (SNNs) [1],[3]. In 
SNNs, propagated information is not just encoded by the 

 
Manuscript received August 3, 2017; revised October 12, 2017; accepted 

November 11, 2017. This work was supported in part by the European Union 
and the Dutch government, as part of the CATRENE program under 
Heterogeneous INCEPTION project.  

A. Zjajo, G.J. Christiaanse, M. van Eijk A. de Graaf, and R. van Leuken 
are with Circuits and Systems Group, Delft University of Technology, Delft, 
2628 CD, The Netherlands (e-mail: amir.zjajo@ieee.org).  

J. Hofmann was with Circuits and Systems Group, Delft University of 
Technology, Delft, 2628 CD, The Netherlands. He is now with Embedded 
Systems Group, Darmstadt University of Technology, Hochschulstrasse 10, 
D-64289, Germany.  

G. Smaragdos and C. Strydis are with Neuroscience Department, Erasmus 
Medical Center, Rotterdam, 3015 GE, The Netherlands.  

C. Galuzzi was with Circuits and Systems Group, Delft University of 
Technology, Delft, 2628 CD, The Netherlands. He is now with the BMI 
Research Group, Maastricht University, Maastricht, 6211 LN, The 
Netherlands. 

Color versions of one or more of the figures in this paper are available 
online at http://ieeeexplore.ieee.org. 

Digital Object Identifier xx.xxxx/TBCAS.201x.xxxxxxx 

firing rate of each neuron in the network, as in artificial neural 
networks (ANNs), e.g. perceptron [4], but, in addition, by 
amplitude, spike-train patterns, and the transfer rate. The high 
level of realism of SNNs and more significant computational 
and analytic capabilities in comparison with ANNs, however, 
limit the size of the realized networks. Consequently, the main 
challenge in building complex and biophysically-accurate 
SNNs is largely posed by the high computational and data 
transfer demands.  

In addition, biological NNs are characterized by co-
localized memory and calculations, and execute computations 
with high degree of parallelism, for what conventional, von 
Neumann CPU-based execution is not very well suitable. Due 
to their inherent high-level of parallelism, reconfigurable 
hardware, such as field-programmable gate arrays (FPGAs), 
are capable of providing sufficient performance for real-time 
and even hyperreal-time simulations of these collective and 
distributed networks. Furthermore, the reconfiguration 
property of FPGA provides the flexibility to modify the 
network topologies and the brain models on demand, (e.g. 
Izhikevich [2],[5]-[6], integrate and fire (IaF) [7] model (and 
its extensions such as the leaky IaF, IaF-or-Burst [8], 
quadratic IaF [9]), Hodgkin-Huxley (HH) [10]-[12], 
simplified Hodgkin-Huxley[13], extended Hodgkin-Huxley 
[14]).  

Small-scale special purpose systems, such as ROLLS [15] 
intended for cortical-like computational modules, implement 
256 IaF neurons. In [16], the system containing several tens of 
thousands of leaky IaF neuron cells are implemented on 
Virtex-7 FPGA platform. In [17], analog-based Neurogrid 
system replicates neurons as an electrical system [18]. With 16 
Neurocores, i.e. the computation elements of the Neurogrid, 
the system is able to simulate over 1 million quadratic IaF 
neurons with billions of synapses. TrueNorth in [19]-[20] 
contains 4096 cores, totaling 1 million programmable digital 
IaF spiking neurons and 256 million configurable synapses. 
Although significantly larger number of neurons can be 
simulated when compared to the FPGA solutions, the 
Neurogrid and TrueNorth platforms are not as flexible 
concerning model changes, nor the neuron behavior can be as 
easily observed. The models are not analyzed as applications 
in general, but only as implementations on the particular 

A Real-Time Reconfigurable Multi-Chip 
Architecture for Large-Scale          

Biophysically-Accurate Neuron Simulation  

Amir Zjajo, Member, IEEE, Jaco Hofmann, Gerrit Jan Christiaanse, Martijn van Eijk,               
Georgios Smaragdos, Christos Strydis, Alexander de Graaf,                                                                 

Carlo Galuzzi, Member, IEEE, Rene van Leuken, Member, IEEE 

C



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

2

platform. Additionally, no neuroscientific-experiment 
instances with biological plausibility were considered. Large 
scale experiments are performed with large number of general 
purpose processors as in the SpiNNaker project [21] as well, 
where over one million low power ARM cores are connected 
by a fast mesh based interconnect link. Subsequently, the 
largest SpiNNaker system is able to simulate over one billion 
neuron cells of Izhikevich type [2].  

However, for electrochemically accurate neuron modeling, 
which is a focus of our study, the conductance-based multi-
compartment Hodgkin-Huxley model [10] is required. 
Biophysically accurate models of biological systems, such as 
the ones using the Hodgkin-Huxley formalism, are comprised 
mostly of a set of computationally challenging differential 
equations often implementing an oscillatory behavior. If the 
interconnectivity between oscillating neurons is also modelled 
(e.g. gap junctions, input integrators, synapses), the cells 
become coupled oscillators. Consequently, all neuron states 
need to be completely updated at each simulation step to retain 
correct functionality. As a result, cycle-accurate, transient 
simulator is necessary. The above difficulties in associated HH 
models and multi-compartmental models with complex 
connections, in conjunction with biophysically plausible 
neuron network sizes, pose significant challenges especially 
when using conventional computing machines. 

The HH model incorporates the membrane potential, and 
includes the concentration of various chemicals, inside the 
neuron, in the calculations to represent its behavior. The 
computational complexity of conductance-based models is 
orders-of-magnitude higher than IaF models, posing a 
significant challenge for their efficient simulation. For HH 
models, GPU implementations have been shown to be less 
efficient compared to reconfigurable hardware solutions [22]-
[23], even though providing notable speedups [24].  

In [12], a simplified version of the HH model is used in an 
FPGA based simulator that is able to simulate 400 
physiologically realistic neurons on a Virtex-4 FPGA device. 
Until recently, most HH models accelerated in reconfigurable 
platforms, due to their efficiency, employed fixed-point 
arithmetic. However, limited accuracy of fixed-point 
representation results in a faulty representation of neural spike 
location, altering the functional behavior of the neuron [25]. 
The system in [11] simulates a biophysically accurate 
representation of the neuron using floating-point arithmetic, 
and the HH model. The cost of the biophysical accuracy is a 
low network size; the largest system proposed contains 4 
neurons. In our previous work [14], we could simulate 48 
extended HH neuron model cells (highly biophysically-
accurate model [26]) with floating point arithmetic on a Virtex 
7 FPGA platform. In [23], a similar system is refined to 
include up to 96 neurons.  

In this paper, we propose an efficient multi-chip dataflow 
architecture for the extended HH neuron cell and subsequent 
interconnected network [27], which exploits data locality and 
minimize network communications over one or multiple 
FPGA devices. The proposed system provides several key 
aspects compared to existing approaches: 

i) Close to linear growth in the communication cost: with 
proposed data localization scheme and the resulting linear 
growth in communication cost, 31× to over 200× more 
neurons could be simulated in comparison to the state-of-the-
art designs, which are limited by the exponential growth in the 
communication cost. 

ii) The extendibility of the system over multiple chips to 
build more accurate systems: the system maintains linear 
growth up to 8 FPGA devices. 

iii) The use of double floating-point arithmetic for the most 
biologically accurate cell behavior simulation, and an easy 
implementation of various neuron network topologies, cell 
communication schemes, as well as models and kinds of cells. 

iv) A high run-time configurability, which reduces the need 
for resynthesizing the system. Additionally, adaption of 
routing tables, and changes to the calculation parameters are 
also possible. In this way, the system reduces the time 
required for experiments with biophysically accurate neurons. 

v) A powerful simulator designed for high precision spiking 
neuron network simulations, but flexible enough to be used for 
smaller neural networks. The simulator features configurable 
on- and off-chip communication latencies as well as neuron 
calculation latencies. All parts of the system are generated 
automatically based on the neuron interconnection scheme in 
use. The simulator allows exploration of different system 
configurations, e.g. the interconnection scheme between the 
neurons, the intracellular concentration of different chemical 
compounds (ions), which affect how action potentials are 
initiated and propagate. 

The paper is organized as follows: In Section II, the cell 
abstract model and the hardware design configuration are 
described. Section III focuses on the system design from a 
high-level perspective, including adjustments to the network 
to scale over multiple FPGAs, synchronization between 
clusters and connectivity, and structure generation. Section IV 
discusses implementation details including clusters, routers, 
and the control bus for run-time configuration. In Section V, 
simulations and hardware utilization for different scenarios 
including network and multi-chip performance are presented. 
Finally, Section VI provides a summary and the main 
conclusions. 

II. THE INFERIOR OLIVARY NUCLEUS CELL 

A. Abstract Model Description 

The neuron cells considered in this paper are located in the 
inferior-olivary nucleus (ION). The ION is an especially well 
choreographed part of the brain [28]-[29]. The extended (by 
gap junctions) HH model based on experimental findings in 
[29] (Fig. 1) implements a neuron with three distinct 
compartments: the dendrite, the soma and the axon. The gap 
junctions are part of the dendritic compartment; consequently, 
the dendritic compartment receives the extra input coming 
from the inter-neuron connection. The gap junctions (which 
differ from typical synapses in that they are purely electrical) 
are associated with important aspects of cell behaviour as they 
are not just simple connections; rather, they involve significant 
and intricate electrical processes, which is reflected in their 
modelling details.  



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

3

 
Fig. 1: Inferior olive neuron model [30]. 

 
TABLE I– NEURON REQUIREMENTS PER SIMULATION STEP 

Computation FP operations per neuron 

Gap Junction 12 per connection 
Cell Compartment 859 

I/O and storage FP variables per neuron 

Neuron States 19 

Evoked Input 1 

Connectivity Vector 1 per connection 

Neuron Conductances 20 

Axon Output 1 (Axon voltage) 

Compartmental Task % of FP ops for 96 cells 

Soma 13 

Dendrite 10 

Axon 8 

Gap Junction 69 

 

Every compartment includes biophysical attributes, i.e. state 
parameters denoting its electrochemical state, and computation 
is performed in all three compartments (and within each gap 
junctions connection itself). For the calculation of a single 
parameter, one exponential function and several 
multiplications and divisions need to be carried out. 
Additionally, for realistic signal representation the use of 
floating-point (FP) arithmetic is essential [25]. The total 
number of FP operations required for simulating a single step 
of a single neuron cell (including a single gap junction) is 871 
(Table I). In an n-cell network (nc), if each neuron maintains a 
constant number of connections λ to neighboring cells, the 
complexity of overall gap junction computation cost increase 
as Ogj(nc×nc×ξ), where ξ is the connectivity density [30]. The 
worst-case interconnectivity scenario occurs when ξ=1, i.e. 
all-to-all neuron connection, resulting in Ogj(nc

2) complexity. 
All remaining, non-gap junction computation increases 
linearly Ocell(nc) since the rest of the application is of purely 
dataflow nature [30]. The neuron model defines effectively a 
transient simulator through computing discrete output axon 
values in time steps which, when integrated in time, recreate 
the output response of the axon. The three compartments and 
gap junctions are evaluated/updated concurrently at each 
simulation step. The model is calibrated with a simulation 
time step of 50 µsec, where this simulation step also defines 
the real-time behaviour of the whole network.  

 
Fig. 2: Dataflow of a PhC. The dashed box on the left is the Axon/Soma 
calculation. The one on the right is the dendrite calculation. Cell states are 
stored in the BRAM (memory). All in- and output data signals are connected 
to FIFO buffers (not shown) [31].  

 
Fig. 3: A diagram showing how the controllers are housed within the cluster 
controller; the cluster done logic is excluded from view. Dataflow of a PhC. 
The dashed box on the left is the Axon/Soma calculation. 

 
Simulations steps are identical to each other in terms of 

operations performed.  

B. The ION Cell Design Configuration 

Operationally, the neuron network needs to compute and 
communicate simulated ION responses to their neighbors and 
the axon. We run both operation concurrently, and devise 
separate hardware architectures for computation (based on the 
multi-compartmental extended HH), and communication 
(Section III). We refer to a neuron computation unit as a 
physical cell (PhC)1. Within a PhC, the topology-dependent 
(i.e. incorporating the neighbors coupling) dendrite calculation 
(ηdend), and topology-independent Axon+Soma (ηa+s) 
calculation run in parallel (Fig. 2) [31]. The total amount of 
cycles each PhC requires (ηPhC) is 

),max( sadendPhC += ηηη         (1) 

The Axon+Soma computational unit computes the axon and 
soma state, and updates a set of cell parameters, based on the 
current cell compartment states and cell parameters.  
 

1 The computation units are called physical cells (PhCs) to recall that they 
are physically implemented in hardware, and that the outputs of their 
computations mimic the actual inferior-olivary nucleus (ION)-cell behavior. 
See [29] for additional information. 

 

Applied Impulse 
Current I_app 

N
eu

ro
n 

C
el

l 
In

te
rc

on
ne

ct
iv

ity
 

N
eu

ro
n 

C
el

l 
In

te
rc

on
ne

ct
iv

ity
 

Applied Impulse 
Current I_app 

Applied Impulse 
Current I_app 

 

Dendrite 

 

Soma 

 

Axon 
 

Axon 
 

Axon 

 

Soma 
 

Soma 

 

Dendrite 
 

Dendrite 

C
el

l p
op

ul
at

io
n 

t0 t1 t2 Constant time step Constant time step 

Duration of simulated brain activity 

Axon Potential 
V_axon 

Axon Potential 
V_axon 

Axon Potential 
V_axon 

… 
 

PhCDendrite 

Axon+Soma 

PhCDendrite PhCDendrite PhCParam 

DendNet 

DendComb 

A+D Output Calc done 

FIFO 

BRAM 

Operations 

Control signal 

Data 

Start 
Neigbour 
States 

Impulse 

Legend 

Request 
ExpC 

Impulse 
HP-Port 

ExpC 
LP-Port 

Request 
Neighbour 
States 

Calc Done 

PhC Output 

 

Read 
Controller 

Pre-read 
Controller 

Write 
Controller 

Init  
Controller 

Memory 
Controller 

BRAM 
storage 

 
Global Dends 

Local Apps 
Init Params 

Routing 
Table 

PhC 

PhC 

Routing network Start signal Init channel Cluster idle 
signal 

FIFO 

BRAM 

Controller 

Control signal 

Data 

Legend 

Cluster ID 

Cluster 
Controller 



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

4

Internally, the dendrite calculation is dependent on the result 
of the Axon+Soma calculation to calculate the new dendrite 
state. Externally, both calculations use the same exponent co-
processor (ExpC). The exponent operations, compared to 
standard operations, require relatively more resources and 
cycles to complete.  

To reduce the required amount of resources without adverse 
effect on the calculation latency, we utilize a single exponent 
instance over multiple neuron calculations [31] in a Kahn 
process network [32]. As the Axon+Soma calculation has a 
longer critical path (and is topology independent), it is 
scheduled with a higher priority. Each calculation within a 
cluster is synchronized, resulting in Axon potentials being 
calculated at predictable times. The dendrite calculation is, 
however, not synchronized, giving it more flexibility over the 
exponent co-processor. By keeping the critical path within the 
dendrite calculation to a minimum, and by allowing it to start 
processing new network neighbors before the current exponent 
is known, each simulated cell can quickly be scaled up to 
allow more connections within the neuron network. The 
exponent co-processor is, thus, constantly being given new 
values to calculate, with high priority tasks arriving after a 
deterministic amount of cycles. 

The Axon+Soma Calculation Unit Configuration: Exponent 
operands within the Axon+Soma calculation unit consists of an 
addition and multiplication carried out by two constants (χ, β) 
on a single cell state (compartmental potential):  

βχφφ ×+= )(, Statee          (2) 

The controller for the application specific co-processor 
(ASC) insures that the correct state potential, and operand 
constants (χ, β) are stored in the registers at the correct time. 
Multiple PhCs are scheduled around a single ExpC to reduce 
the required resources. Consequently, the ASC is adjusted to 
receive multiple cell states from multiple sources, and to send 
a source address with the exponent operand as (addressed) 
output. The calculation can be subdivided in two segments, 
fetch and schedule, respectively. Before any calculations can 
be carried out, the hardware necessities to fetch the required 
cell states and parameters from the local memory, while also 
sending out a request to the memory controller to receive a 
(non-zero) impulse value. With the fetched values the 
Axon+Soma calculation unit can partly offload its calculations 
to the ASC, while starting calculations that are independent of 
the results from the exponent calculations. The ηa+s is 
determined by the number of PhCs that share a co-processor, 
and how the axon and soma calculations are scheduled 

)()1()( νθνγηη −−×+= ++ basesasa
      (3) 

where ηa+s(base) is the base latency, i.e. one ExpC is connected 
to only one PhC, γ is the number of exponent calculations 
required by the Axon+Soma calculation unit, ν is the 
maximum number of PhCs sharing a ExpC, and θ is the 
overlapping factor.  

The Dendrite Calculation Unit Configuration: The dendrite 
calculation unit computes the new dendrite compartmental 

state based on the current dendrite state, the neighboring 
dendrite states, and finally an intermittent response generated 
by the Axon+Soma calculation unit. DendNet computes the 
coupling effect of neighboring cells in the neuron network; its 
input is determined by the current dendrite state that is fetched 
from the BRAM memory, and the neighboring dendrite states 
requested from the memory controller. DendNet is scheduled 
around the exponent operation and is split into two parts: 
computations that are dependent of the exponent result, an 
those that are not. DendComb combines the intermittent 
response received from the Axon+Soma calculation unit and 
results from the DendNet to generate a new dendrite state 
potential. The resulting dendrite state from this operation is 
then locally updated and communicated to the memory 
controller. The dendrite compartmental computation latency 
ηdend

2
 can be written as function of  

DDblockdin

sadindend

NN ×+×+=
+= +

ωαηϕδη
τηηη

),max()(

),max(     (4) 

where α is the amount of cycles that takes place before each 
(low priority) exponent calculation, ND is the number of 
dendrites, δ is the start-up delay partly dependent on the 
amount of dendrite calculations that share a memory core, and 
φ is the grouping factor. A blocking time ηblock is involved if 
the exponent calculation is being blocked by another task after 
all α calculations are performed, and ω is the number of cycles 
after the result of the exponent calculation is known. 

The Exponent Core: We schedule the exponent operands 
through a read scheduler, i.e. the scheduler that feeds 
exponent operands onto a single channel (vector) with an 
(additional) address3. The vector is fragmented over the 
architecture that calculates the exponent, and a shift register 
that keeps track of where the current calculation (address) is in 
the pipeline. When the exponent is calculated, a valid address 
is presented at the end of the shift register, signaling a write 
back to a specific (addressed) output FIFO.  

C. The ION Cell Cluster Controller 

The neuron cells are connected with decreasing probability 
the further they are apart [1]. The individual computation 
units, i.e. physical cells that are in a close proximity to each 
other are placed within a confinement of a (neighbor) cluster. 
The amount of clusters κ implemented in the FPGA is based 
on the critical resources and is determined as κ=PhCtot/φ. The 
cluster controller relates new values to the calculation 
architecture when requested, and store and route their 
responses. Each cluster controller is designed around several 
parallel running hardware architectures, that are synchronized 
by FIFO's. In Fig. 3, an example is given of a cluster 
controller with two connected PhCs.  

 
2 Within the dendrite calculation, DendComb combines the 2 results after τ 

cycles.  
3 The high priority is already addressed by the ASC. Low priority inputs 

are only passed as operands, and are given an address based on which FIFO 
they are read from.  



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

5

 

Fig. 4: The system overview. The computing elements (the PhCs) are grouped inside a cluster to make communication between neighboring cells fast. These 
clusters are connected in a tree topology NoC. The router fan-out in this case is 2, and can be changed according to the requirements of the implementation. The 
same holds true for the number of PhCs in any cluster [27]. 

 

The init controller receives a coded set of initialization 
parameters (e.g. the cluster identification number, a local 
routing table, initial parameters for the local PhCs and the 
dendrite states of all cells) through the initialization channel. 
The write controller communicates with the PhCs by request. 
If the PhCs are not initialized and a request arrives, the write 
controller transmit the initialization parameters in a pre-
defined order starting with the dendrite state. During the 
simulation, if a dendrite request is received, the write 
controller looks up (i.e. with the help of the local routing 
table) which dendrite states of the neighboring cells it should 
send. Consequently, the write controller sequentially sends 
each dendrite state addressed on the columns of that row. If an 
applied current request is received, the local address is used to 
get the applied current from the BRAM storage. The 
neighboring cell addresses are placed column-wise in the 
routing table, while each row represent where a local cell is 
located in the IO topology. After a cell response is generated, 
the pre-read controller determines the global address of the 
cell within the neural network.  

If the cell response is an axon value, the signal is sent to the 
routing network; if it is a dendrite response, the new value is 
duplicated and sent both to the routing network as to the read 
controller through an internal FIFO for storage. The read 
controller authorize storage of the applied ION currents and 
dendrite responses in the BRAM, i.e. the read controller 
determines which ionic currents will be admitted by 
calculating the relevant global address range based on the 
cluster identification number and the amount of cells that are 
connected to the cluster controller. The dendrite states and 
applied currents are stored in the BRAM in two parts; current 
and next state memory. At the start of each simulation-round a 

start signal is received by memory controller and the bit is 
issued that indicates that the next state memory block is now 
current state and vice versa. This prevents memory being 
overwritten by the read controller before it can be sent to the 
PhC. The cluster controller falls into an idle state when the 
connected PhCs have finished calculations and all newly 
generated results have been stored and/or sent to the routing 
network.  

III.  MULTI-CHIP DATAFLOW ARCHITECTURE 

Neural connectivity have been previously implemented 
through shared bus networks [14], however, bandwidth 
restrictions limit the scalability of such approaches. 
Alternatively, local buses between adjacent neurons arranged 
in one-dimensional [19] or two-dimensional [21] grid network 
have been proposed for increased routing flexibility. However, 
one of the most notable features of the real brain networks is 
their high degree of clustering, with nodes (neurons) 
connecting preferentially to others in their local 
neighbourhood [33]. The large density of local connections in 
brain networks may have several functional and evolutionary 
benefits, such as enhanced communication speeds, and 
minimal wiring and metabolic costs. To scale communication 
linearly with neuron count we emulate the cortex’s 
hierarchically branching wiring patterns.  

In the clusters, configurable routing tables define how PhCs 
are arranged within the neuron network. By attaching each 
cluster to a binary tree network, responses between PhCs are 
shared (Fig. 4) [27]. Furthermore, through the top node of the 
tree network, a current impulse can be applied to all PhCs, and 
all output results of the neuron network streamed.  

 

 I2C/SPI 

2 

2 

2 2 
CB 

Control Bus  
Interface 

Iteration  
Controller 

ADC DAC 

Packetizer 

Converter 

Packets 

ADC DAC ADC ADC DAC DAC 

CB 

2×80 

2 

2 

2×80 
2 

2×80 

Buffer 

Router 
Controller 

Routing Table 

Routing Table Routing Table 

CB 

2 

CB 

2×80 

2 

2 

2×80 2×80 

Buffer 

Router 
Controller 

Routing Table 

Routing Table Routing Table 

Routing Table 

Routing Table Routing Table 

Memory 

CB 

Cluster 
PhC PhC PhC PhC 

Memory 

CB 

Cluster 
PhC PhC PhC PhC 

Memory 

CB 

Cluster 
PhC PhC PhC PhC 

Memory 

CB 

Cluster 
PhC PhC PhC PhC 

Router 
Controller Buffer 



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

6

 
Fig. 5: The router diagram [27].  
 
The design can be tuned using 4 parameters: the number of 

clusters, the number of PhCs, the amount of shared exponent 
coprocessors within a cluster, and the time sharing factor for 
each PhC.  

A. Localize Communication Between Clusters 

The data from other cells is read seldom in the PhC [1],[14]. 
Consequently, a single cell does not require memory access 
each clock cycle, allowing for a shared memory design with 
time-shared instead of parallel memory access. The main 
advantage is that the common case of close communication is 
still optimal. The number of PhC around one shared memory 
is limited by placement and wire length constraints of the 
FPGA technology in use.  
B. Connecting Clusters: Routers  

In the proposed architecture, each router has 2 to n children, 
and each child can be either a cluster or another router. The 
clusters transmit only two types of data, i.e. dendritic and axon 
hillock potentials. While cell dendrite potentials are shared 
among all IONs, axon hillock potentials are only given as an 
output. Consequently, the router is designed with the 
following rules: i) in a balanced tree network each router is 
connected to one bi-directional upstream and two bi-
directional downstream channels, ii) new dendrite potential 
values can arrive through any channel and are passed along 
the other two channels, and iii) new axon hillock potential 
values only arrive through one of the two down-stream 
channels and are then transmitted to the upstream channel.  

The data produced by each cell in the network and the cell 
identification number and are combined in a packet. Based on 
a static routing table (which reflects the way the cells 
communicate), each router decides in which direction i.e. to 
which cells, the packet has to be forwarded to. Within the 
proposed design, each router (Fig. 5) is connected to 3 
channels and is implemented around a single core (Router 
Logic) together with a (FIFO) buffer. The channels consist of 
an input and output FIFO, forming a bi-directional channel. 
The router logic reads every channel in a round robin type 
fashion. If a new packet is present in one of the channels it is 
read (and based on the rule set), the packet is transmitted to 
one or two of the other channels.  

 
 

 
Fig. 6: The single FPGA implementations are connected using a ring topology 
network. The FPGA are synchronized via a central controller. 

 
However, due to hardware limitations a channel might fill 

up before it is emptied (read). Since no packet is allowed to be 
dropped, packets that cannot be forwarded right away, i.e. 
when the receiving buffer is full, are stored for delayed 
delivery.  

The width of this delayed buffer is bp+[log2(no)] bit, where 
bp is the amount of bits for a packet, and no is the amount of 
outputs of the router. By designing the router around a small 
finite state machine (FSM), each symbol can be passed to 1 or 
2 channels every 2 clock cycles. To avoid cases in which the 
router continuously try to deliver delayed packets to full 
routers, new packets always have precedence over the delayed 
ones. Since packet forwarding is not aware of the complete 
network connectivity, the components are efficient, and with 
limited overhead. 

C. The Control Bus for Run-Time Configuration  

Due to the high number of components, the most commonly 
used bus systems, e.g. Wishbone or Serial Peripheral Interface 
(SPI), are not applicable. In addition, these buses require a 
significant number of wires to address every component in the 
system. Consequently, we designed a custom-made bus, which 
follows the tree structure of the NoC.  

By traversing the tree, all components can be addressed, 
from the routers down to the clusters and to each PhC. 
Importance of throughput is reduced, since all configuration is 
set while the system is paused. The amount of data transmitted 
via the bus is low with the largest transmissions being 
parameter changes of a cell. A bus command comprises of two 
parts, i.e. the address and the payload. Correspondingly, the 
bus first opens up a connection to a specific component using 
the address, and then forwards the payload to the component. 
Each component in the system, e.g. a router or a cluster, has 
an attached control bus router that can either forward the bus 
signal to any of its children, or forward the bus signal to the 
attached component. 

 
 
 

 

Delay 
Buffer 

Store packets 
that can not be 

forwarde 
immediately 

FSM  
 

Go through inputs one by one 
and forward packets according 

to routing table 
If idle, inject packets              

from delay buffer 

Ringbuffer 

Controller 

In In Out Out 

In Out 

Routing Table FIFO 

Routing Table Routing Table FIFO FIFO 

 

Controller
r 

Router 

FPGA Router Router 

Cluster Cluster Cluster Cluster 

Router 

Router 

Router FPGA 

Cluster Cluster Cluster Cluster 

F
P
G
A
 

R
o
u
t
e
r
 

R
o
u
t
e
r
 

R
o
u
t
e
r
 

C
l
u
s
t
e
r
 

C
l
u
s
t
e
r
 

C
l
u
s
t
e
r
 

C
l
u
s
t
e
r
 

F
P
G
A
 

R
o
u
t
e
r
 

C
l
u
s
t
e
r
 

R
o
u
t
e
r
 

R
o
u
t
e
r
 

C
l
u
s
t
e
r
 

C
l
u
s
t
e
r
 

C
l
u
s
t
e
r
 



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

7

 
Fig. 7: Multi-FPGA system experimental setup.  

 
Fig. 8: FPGA resources utilization.  

D. Adjustments to the Network to Scale over Multiple FPGAs 

Since the communication frequency decreases closer to the 
root of the network tree, multiple FPGAs can be connected at 
the highest level without significant impact on performance.  

 

Although adding another tree layer promises easy 
extendibility, the limited connection possibilities of each 
FPGA, and need for an extra FPGA for routing between the 
FPGAs containing the clusters, however, restrict their use. 
Consequently, as most communications occur between 
neighboring FPGAs, the FPGAs are connected in a ring based 
topology (Fig. 6), which is less complex in terms of topology 
generation and administration of the routing tables. 

To synchronize the communication between the clusters, 
one of the FPGAs contains a controller that handles all the 
synchronization packets. In large systems this could impact 
the time needed to complete the iteration. To prevent this, we 
use one of the FPGAs as a master. Consequently, the signal 
does not have to cross multiple stages, the run time is constant 
for any number of cells, and signal can finish iteration 
immediately. The master FPGA, in turn, issues the new round 
signal when adequate.  

IV.  EXPERIMENTAL RESULTS 

The system is automatically generated using a human-
readable configuration file, which includes all relevant 
parameters of the system and can be easily modified allowing 
exploration of different cell communication schemes, several 
fan-out values, etc. The control interface includes 
initialization, setting of Iapp, direct memory access (DMA) 
(scatter mode) and Ethernet user datagram protocol (UDP) 
transfer from the FPGA to the PC, and interrupt support. After 
the design is configured with the desired accuracy (32/64-bit), 
it is synthesized through the Vivado HLS tool to generate 
VHDL code, and test bench files.  

 
Fig. 9: Neuron network running on the Xilinx Virtex 7 XC7VX550 FPGA: output waveform of the inferior olive cell model in a network configuration, axon 
potential vs. brain-simulation time. 



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

8

TABLE II– IMPLEMENTABLE CELLS ON A FPGA WITH CRITICAL RESOURCES UNDERLINED 

Implementation Resources (Absolute) Resources (Total Utilization) Results 
FPGA Accuracy Clusters PhC TSF ExpC LUT FF DSP BRAM LUT FF DSP BRAM SimCb Cost/SimCc 

[14] a 64b NA 8 6 NA 240k 209k 1384 42 69.4% 30.2% 48.1% 1.8% 48 $ 144 

Virtex 7 64b 9 2 23 1 324k 202k 1215 233 93.7% 29.2% 42.2% 19.7% 414 $ 15.5 

Virtex 6 64b 1 7 20 2 124k 77k 634 122 82.9% 25.8% 82.6% 14.7% 140 $ 20.1 

Spartan 6 64b 1 1 8 1 23k 21k 113 27 25.5% 11.6% 62.8% 10.1% 8 $ 29.6 

[23]d  32b NA 8 12 NA 251k 162k 1600 804 83% 27% 57% 78% 96 $ 51.2 

Virtex 7 32b 18 2 33 1 311k 190k 1008 557 90% 27.5% 35% 23.6% 1188 $ 5.4 

Virtex 6 32b 4 4 29 2 128k 85k 480 192 85.4% 28.5% 62.5% 23.1% 464 $ 6.1 

Spartan 6 32b 1 4 18 2 36k 23k 152 33 39.9% 12.8% 84.4% 12.3% 72 $ 3.3 
aOnly estimates are given in the previous design, built on the same Xilinx Virtex 7 XC7VX550 FPGA board as the current design. 
bWe refer to each (neuron) node in the neuron network as a Simulated Cell (SimC), whereas we refer to the hardware used to simulate the cells as a PhC. 
cReference costs were taken from [40]. 
dExtended HH model, 22.2k operations per neuron in 1 ms, 100% interconnectivity density, 2131.2 MFLOPS. 

TABLE III–  HARDWARE UTILIZATION OF THE MOST IMPORTANT COMPONENTS OF THE SYSTEM ON A X ILINX V IRTEX XC7VX550 FPGA BOARD 

Model Cluster PhC TSF BRAM % DSP % FF % LUT % Neurons 
Hodgkin-Huxley 18 2 33 23.6 35 27.5 90 1188 

Izhikevich 5 8 70 38 22 25 89 2800 

Integrate and Fire 5 8 75 23 20 16 54 3000 

 

 
Fig. 10: Three packet injection schemes. Injecting the packets after each round 
through all input FIFO results in the slowest iteration times. Injecting only 
when all FIFO are empty for one round or for multiple rounds achieves 
comparable performance. Injecting after one round of input inactivity results 
in the best overall performance. 

 
Fig. 11: Comparison of iteration performance for different cluster sizes. Small 
routers perform better than large routers - the best performing configuration 
consists of small clusters and small routers at two PhCs per cluster and a fan-
out of two. 

 

The multi-FPGA system experimental setup is illustrated in 
Fig. 7, while FPGA resources utilization is shown in Fig. 8. In 
Table II, the hardware utilization for double/single floating-
point precision for the main components of the system are 
shown in terms of flip-flops (FF), time sharing factor (TSF), 

block RAM (BRAM), and look-up tables (LUT); smaller 
components, like the synchronization circuits, are omitted for 
clarity. All results noted are for the 8-way connectivity 
inferior-olivary network model. The minimum time interval to 
achieve a realistic representation of the neuron-cell behavior is 
determined as in [29]. For comparison purposes, Table III lists 
hardware utilization of different spiking neuron models, i.e., 
Xilinx Virtex 7 XC7VX550 FPGA can accommodate 1188 
32b-accurate Hodgkin-Huxley type neuron cells, and 
approximately 2800 and 3000 Izhikevich, and integrate and 
fire type neural cells, respectively. 

The neuron spiking properties are governed by the specific 
parameter sets: these properties have well-defined role in 
defining explicit brain functions, e.g. the cortical neurons with 
tonic bursting contribute to the gamma-frequency oscillations 
in the brain [34]. In the extended HH model [29] a 
compartment is added to model the axon hillock of the cell 
and enable the model to generate axonal bursts of sodium 
spikes. The model includes a high- and low-threshold calcium 
current, calcium-dependent potassium current, and a 
potassium and sodium current. All compartments also have a 
passive leak current. Most neurons are quiescent but can fire 
spikes when stimulated. When the pulses of the current are 
injected at the input, the neuron fire a train of spikes, the 
process called tonic spiking [35]. If such neurons fire 
continuously, it indicates that persistent input is offered to the 
neurons. A specific neuron could fire only a single spike at the 
onset of the input, and could subsequently stay quiescent, i.e. a 
response called phasic spiking. Specific neurons fire periodic 
bursts of spikes when stimulated. Similar to the phasic 
spiking, the modelled neurons can show phasic bursting 
behavior, which is needed to transmit saliency of the input, to 
overcome the synaptic transmission failure and reduce 
neuronal noise [36], or can be used for selective 
communication between neurons [37]. Intrinsically bursting 
excitatory neurons [38] can exhibit a mixed type of spiking 
activity. 

2 3 4 5 6 7 8 9 10
0

5k

10k

15k

20k

25k

Router Fan-Out

It
er

at
io

n 
C

yc
le

s

 

 

each iteration

when FIFO empty

when FIFO empty, multiple iterations

2 3 4 5 6 7 8 9 10
4000

4500

5000

5500

6000

6500

7000

7500

Router Fan-Out

It
er

at
io

n 
C

yc
le

s

 

 

2 PhC

4 PhC
6 PhC

8 PhC



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

9

 
Fig. 12: Comparison of systems with different cluster sizes; the routers are 
kept constant at fan-out of two; clusters with two, four and eight PhCs achieve 
the shortest iteration times, while larger clusters are generally slower. 

 
Fig. 13: Comparison between different cluster sizes for different amounts of 
cells. The neighbor connection scheme is used and each cell calculation takes 
534 cycles. The systems use a router fan-out of two. The baseline design is 
from [14]; all presented configurations of the new system meet the brain real 
time at 100 MHz. Furthermore, all of them scale linearly with the number of 
cells. The baseline on the other hand scales exponentially. 

 
A visualization of the ION axon potential Vaxon run on the 

FPGA for 1s brain simulation time (with associated neuron 
parameters) in a biophysically accurate neuron network 
consisting of 768 extended Hodgkin-Huxley neuron cells is 
shown in Fig. 9. Here, an impulse of -1mA/cm2 is applied 
after 0.19s for a duration of 100 ms with a resting neural 
network surface current of 0.5 mA/cm2. Similar patterns are 
found with biological test [39]. Simulating identical network 
settings in SystemC require 59 minutes of cpu-time on a 
openSUSE 13.1 (x86_64) system with Intel® Xeon® CPUs 
E5-1620 3.5 GHz processor and 32 GB of memory. 
Consequently, a FPGA ported design yields > 3500× speed-up 
(performed in a real-time). The hardware results are compared 
to a golden-reference file, containing the expected values of 
the simulation. Observed error is very low, less than 0.2×10-5 

% for cell resting state (when most internal cell variables 
change rapidly), and at cell firing state, for both 32 and 64-bit 
configurations. Design Space Exploration: For the router 
performance, the time when delayed packets get injected into 
the network is essential: we compared three injection models 
(Fig. 10), i.e. packets are injected after each run through all 
input FIFO, packets are only injected if the FIFO have been 
empty for a complete round, and packets are injected if there 
has been no activity on the inputs for 10 rounds.  

 
Fig. 14: Comparison between different system configurations utilizing 
between one and eight chips; the multichip systems utilize the packet based 
synchronization method. 

 
Fig. 15: Comparison between different system configurations utilizing 
between one and eight chips; multichip systems utilize the dedicated wire 
based synchronization method. 

 
Injection after each iteration is not feasible and results in 

very long iteration times. Fig. 11 highlights the different fan-
out in respect to cluster sizes. Small clusters with small routers 
and bigger clusters with large fan-out (>8) provide the best 
overall performance. The best overall performance is achieved 
by 2 PhC with a router fan-out of 2 with 4012 cycles. The 
cluster size choice is illustrated in Fig. 12. All routers are kept 
at a fan-out of 2 (i.e. optimal fan-out as shown in Fig. 8). Due 
to the fact that all the PhC of a cluster time-share a memory, 
the clusters with more PhCs perform worse, especially at a 
higher number of cells: the difference for 2048 cells between 2 
PhCs clusters and 18 PhC clusters is 30%.  

Single FPGA Performance: Comparison between different 
cluster sizes for different amounts of cells is illustrated in Fig. 
13. The absolute difference in execution time for 32 to 512 
cells is 354 cycles, and 191 cycles in the worst case (2 PhCs 
system). While the proposed system scales linearly with the 
number of cells in the system, the baseline [14] scales 
exponentially. Considering an average increase in run-time of 
120 cycles for the twice the amount of cells, the maximum 
number of PhC on a single chip can be estimated as ψ=(cn-
co)/120, where cn is the number of iteration cycles available 
for one iteration, i.e. at 100 MHz within the brain real-time 
boundary4 it leads to 5000 cycles, and co stands for the amount 

 
4 The maximum number of cell states that can be computed within the 

model (in the case of the evaluated, high-detail inferior-olive model, the 
simulation time step is 50 µs [29].  

256 512 1024 2056
0

5k

10k

15k

20k

25k

Cells

It
er

at
io

n 
C

yc
le

s

 

 

2 PhC
4 PhC

8 PhC

12 PhC

16 PhC

18 PhC
20 PhC

0 32 64 128 256 512
0

10k

20k

30k

40k

50k

60k

70k

Cells

It
er

at
io

n 
C

yc
le

s

 

 

Baseline

Optimal

2 PhC
4 PhC

8 PhC

0 32 64 128 256 512
0

1k

2k

3k

4k

5k

6k

7k

8k

Cells

It
er

at
io

n 
C

yc
le

s

 

 

2 ICs 2 cycles
2 ICs 8 cycles

2 ICs 32 cycles

4 ICs 2 cycles

4 ICs 8 cycles
4 ICs 32 cycles

8 ICs 2 cycles

8 ICs 8 cycles
8 ICs 32 cycles

0 32 64 128 256 512
0

0.5k

1k

1.5k

2k

2.5k

Cells

It
er

at
io

n 
C

yc
le

s

 

 

2 ICs 2 cycles
2 ICs 8 cycles

2 ICs 32 cycles

4 ICs 2 cycles

4 ICs 8 cycles
4 ICs 32 cycles

8 ICs 2 cycles

8 ICs 8 cycles
8 ICs 32 cycles



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

10 

of cycles currently used, i.e. 4372 cycles at 512 cells.The 
value received, ψ, denotes the amount of times the number of 
cells in the system can be doubled: ψ=5.23. Thus, the system 
supports more than 19200 cells on one chip for the neighbor 
connection scheme. For normal connection mode, the system 
requires 4597 cycles at 512 cells. The increase in iteration 
time for the twice the amount of cells is 155, leading to ψ=2.6 
doublings, and hence, more than 3000 cells on one chip.  

Multi FPGA Performance: Comparisons are performed 
using both the dedicated wire, as well as the packet-based 
synchronization methods. In contrast to the packet-based 
approach, in a dedicated controller method that is connected 
with each chip, no packet has to cross multiple chip 
boundaries. For the normal connection scheme the dedicated 
controller performs slightly better than the packet based 
controller (Fig. 14). The dedicated controller system is 3.84 
times faster than the packet based approach at 8 chips with 
very slow communication (Fig. 15). For faster connection 
speeds on the other hand the difference in communication time 
is in the order of 1 %. 

V. CONCLUSION 

Current neuron simulators, which are precise enough to 
simulate neurons in a biophysically-meaningful way, are 
limited in amount of neurons to be placed on the chip, the 
interconnect between the neurons, run-time configurability 
and the re-synthesis of the system. In this paper, we propose a 
system that is able to bridge the gap between biophysical 
accuracy and large numbers of cells (19200 cells for neighbor 
connection mode and over 3000 cells in normal connection 
mode). The cells are grouped around a shared memory in 
clusters to allow for instantaneous communication. Clusters 
that are close communicate using only one hop in the network; 
clusters that are further away communicate less frequently 
and, consequently, the penalty for taking multiple hops is less 
severe. Added advantage is that the system can be extended 
over multiple chips without significant performance penalty. 
This combination of clusters and a tree topology network-on-
chip allows for almost linear scaling of the system. To provide 
run-time configurability, a tree-based communication bus is 
used, which enables the user to configure the connectivity 
between cells and change the parameters of the calculations. 
As a result, re-synthesizing the whole system just to 
experiment with a different connectivity between cells is not 
required. The user has to enter the amount of neurons in the 
system as well as the desired connectivity scheme. From this 
information, all required routing tables and topologies are 
automatically generated, even for multi-chip systems. A 
porting the network to the FPGA yields at least several 
thousand simulation speed-up in comparison with SystemC 
simulation, with negligible loss of accuracy. 

REFERENCES 
[1] W. Gerstner, W.M. Kistler, Spiking neuron models: single neurons, 

populations, plasticity, Cambridge University Press, 2002. 
[2] E.M. Izhikevich, “Which model to use for cortical spiking neurons?”, 

IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063-1070, 
2004. 

[3] W. Maass, “Noisy spiking neurons with temporal coding have more 
computational power than sigmoidal neurons”, in M. Mozer, et al. (ed.), 
Neural Information Processing Systems, MIT press, pp. 211-217, 1997. 

[4] W. McColloch, W. Pitts, “A logical calculus of the ideas immanent in 
nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115-
133, 1943. 

[5] K. Cheung, S.R. Schultz, W. Luk, “A large-scale spiking neural network 
accelerator for FPGA systems”, International Conference on Artificial 
Neural Networks and Machine Learning, pp. 113-120, 2012. 

[6] D. Pani, et al., “An FPGA platform for real-time simulation of spiking 
neuronal networks”, Frontiers in Neuroscience, vol. 11, pp. 1-13, 2017. 

[7] H. Shayani, P.J. Bentley, A.M. Tyrrell. “Hardware implementation of a 
bio-plausible neuron model for evolution and growth of spiking neural 
networks on FPGA”, NASA/ESA Conference on Adaptive Hardware and 
Syst., pp. 236-243, 2008. 

[8] G. Smith, C. Cox, S. Sherman, J. Rinzel, “Fourier analysis of 
sinusoidally driven thalamocortical relay neurons and a minimal 
integrate-and-fire-or-burst Model,” Neurophysiology, vol. 83, pp. 588-
610, 2000. 

[9] G.B. Ermentrout, “Type I membranes, phase resetting curves, and 
synchrony,” Neural Computation, vol. 83, pp. 979-1001, 1996. 

[10] A.L. Hodgkin, A.F.Huxley, “A quantitative description of membrane 
current and its application to conduction and excitation in nerve”, 
Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952. 

[11] Y. Zhang, et al., “Biophysically accurate floating point neuroprocessors 
for reconfigurable logic”, IEEE Transactions on Computers, vol. 62, no. 
3, pp. 599-608, 2013. 

[12] S.Y. Bonabi, et al., “FPGA implementation of a biological neural 
network based on the Hodgkin-Huxley neuron model”, Frontiers in 
Neuroscience, vol. 8, pp. 1-12, 2014. 

[13] M. Beuler, et al., “Real-time simulations of synchronization in a 
conductance-based neuronal network with a digital FPGA hardware-
core”, International Conference on Artificial Neural Networks and 
Machine Learning, pp. 97-104, 2012.  

[14] M. van Eijk, C. Galuzzi, A. Zjajo, G. Smaragdos, C. Strydis, R. van 
Leuken, “ESL design of customizable real-time neuron networks”, IEEE 
International Biomedical Circuits and Systems Conference, pp. 671-674, 
2014. 

[15] N. Qiao, et al., “A re-configurable on-line learning spiking 
neuromorphic processor comprising 256 neurons and 128k synapses”, 
Frontiers in Neuroscience, vol. 9, pp. 1-17, 2015. 

[16] J. Luo, G. Coapes, T. Mak, T. Yamazaki, C. Tin, P. Degenaar, “Real-
time simulation of passage-of-time encoding in cerebellum using a 
scalable FPGA-based system”, IEEE Transactions on Biomedical 
Circuits and Systems, vol. 10, no. 3, pp. 742-753, 2016. 

[17] B.V. Benjamin, et al., “Neurogrid: a mixed-analog-digital multichip 
system for large-scale neural simulations”, Proceedings of IEEE, vol. 
102, no.5, pp. 699-716, 2014. 

[18] A. Andreou, K. Boahen, “Synthetic neural circuits using current-domain 
signal representations”, Journal of Neural Computation, vol. 1, no. 4, 
pp. 489-501, 1989. 

[19] P.A Merolla, et al., “A million spiking-neuron integrated circuit with a 
scalable communication network and interface”, Science, vol. 345, no. 
6197, pp. 668-673, 2014. 

[20] B.U. Pedroni, et al., “Mapping generative models onto a network of 
digital spiking neurons”, IEEE Transactions on Biomedical Circuits and 
Systems, vol. 10, no. 4, pp. 837-854, 2016. 

[21] J. Navaridas, et al., “Understanding the interconnection network of 
SpiNNaker”, International Conference on Supercomputing, pp. 286-295, 
2009.  

[22] G. Smaragdos, et al., “Real-time olivary neuron simulations on dataflow 
computing machines,” Supercomputing, J. Kunkel, et al., eds., Lecture 
Notes in Computer Science, pp. 487-497, Springer International. 

[23] G. Smaragdos, et al., “FPGA-based biophysically-meaningful modeling 
of olivocerebellar neurons”, International Symposium on Field 
Programmable Gate Arrays, pp. 89-98, 2014.  

[24] H.D. Nguyen, Z. Al-Ars, G. Smaragdos, C. Strydis, “Accelerating 
complex brain-model simulations on GPU platforms,” IEEE Design, 
Automation, and Test in Europe Conference, pp. 974-979, 2015. 

[25] Y. Zhang, et al., “A biophysically accurate floating point somatic 
neuroprocessor”, IEEE International Conference on Filed 
Programmable Logic and Application, pp. 26-31, 2009. 

[26] P. Bazzigaluppi, et al., “Olivary subthreshold oscillations and burst 
activity revisited”, Frontiers in Neural Circuits, vol. 6, no. 91, pp. 1-13, 
2012. 



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

11 

[27] J. Hofmann, A. Zjajo, C. Galuzzi, R. van Leuken, “Multi-chip dataflow 
architecture for massive scale biophysically accurate neuron 
simulation”, International Conference of the IEEE Engineering in 
Medicine and Biology Society, pp. 5829-5832, 2016. 

[28] C.I. De Zeeuw, et al., “Spatiotemporal firing patterns in the cerebellum”, 
Nature Review Neuroscience, vol. 12, no. 6, pp. 327-344, 2011.  

[29] J.R. de Gruijl, et al., “Climbing fiber burst size and olivary subthreshold 
oscillations in a network setting”, PLoS Computational Biology, vol. 8, 
no. 12, pp. 1-10, 2012. 

[30] G. Smaragdos, et al., “Performance analysis of accelerated 
biophysically-meaningful neuron simulations,” International Symposium 
on Performance Analysis of Systems and Software, pp. 1-11, 2016. 

[31] G.J. Christiaanse, A. Zjajo, C. Galuzzi, R. van Leuken, “A real-time 
hybrid neuron network for highly parallel cognitive systems”, 
International Conference of the IEEE Engineering in Medicine and 
Biology Society, pp. 792-795, 2016. 

[32] G. Kahn, “The semantics of a simple language for parallel 
programming,” Information processing, J. L. Rosenfeld, ed., Stockholm, 
Sweden: North Holland, Amsterdam,  pp. 471-475, 1974. 

[33] C. Mehring, U. Hehl, M. Kubo, M. Diesmann, A. Aertsen, “Activity 
dynamics and propagation of synchronous spiking in locally connected 

random networks,” Biological Cybernetics, vol. 88, no. 5, pp. 395-408, 
2003. 

[34] C.M. Gray, D.A. McCormick, “Chattering cells: Superficial pyramidal 
neurons contributing to the generation of synchronous oscillations in the 
visual cortex,” Science, vol. 274, no. 5284, pp. 109-113, 1996. 

[35] J.R. Gibson, M. Belerlein, B.W. Connors, “Two networks of electrically 
coupled inhibitory neurons in neocortex,” Nature, vol. 402, pp. 75-79, 
1999. 

[36] J. Lisman, “Bursts as a unit of neural information: Making unreliable 
synapses reliable,” Trends in Neuroscience, vol. 20, pp. 38-43, 1997. 

[37] E.M. Izhikevich, N.S. Desai, E.C. Walcott, F.C. Hoppensteadt, “Bursts 
as a unit of neural information: Selective communication via resonance,” 
Trends in Neuroscience, vol. 26, pp. 161-167, 2003. 

[38] B.W. Connors, M.J. Gutnick, “Intrinsic firing patterns of diverse 
neocortical neurons,” Trends in Neuroscience, vol. 13, pp. 99-104, 1990 

[39] N. Schweighofer, et al., “Electrophysiological properties of inferior 
olive neurons: a compartmental model”, Journal of Neurophysiology, 
vol. 82, no. 2, pp. 804-817, 1999. 

[40] AVNET. Avnet express. Accessed on 21 March 2016. [Online]. 
Available: http://avnetexpress.avnet.com 

 

 Amir Zjajo received the M.Sc. and DIC degrees from the 
Imperial College London, London, U.K., in 2000 and the Ph.D. degree from 
Eindhoven University of Technology, Eindhoven, The Netherlands in 2010, 
all in electrical engineering. In 2000, he joined Philips Research Laboratories 
as a member of the research staff in the Mixed-Signal Circuits and Systems 
Group. From 2006 until 2009, he was with Corporate Research of NXP 
Semiconductors as a senior research scientist. In 2009, he joined Delft 
University of Technology.  
Dr. Zjajo has published more than 80 papers in referenced journals and 
conference proceedings, and holds more than 10 US patents or patents 
pending. He is the author of the books Brain-Machine Interface: Circuits and 
Systems (Springer, 2016), Low-Voltage High-Resolution A/D Converters: 
Design and Calibration (Springer, 2011, Chinese translation, China Machine 
Press, 2015) and Stochastic Process Variations in Deep-Submicron CMOS: 
Circuits and Algorithms (Springer, 2014). He serves as a member of 
Technical Program Committee of IEEE International Symposium on Quality 
Electronic Design, IEEE Design, Automation and Test in Europe Conference, 
IEEE International Symposium on Circuits and Systems, IEEE International 
Symposium on VLSI, IEEE International Symposium on Nanoelectronic and 
Information Systems, and IEEE International Conference on Embedded 
Computer Systems.  
His research interests include energy-efficient mixed-signal circuit and system 
design for health and mobile applications, data sense-making, sensor fusion, 
and neuromorphic electronic circuits for autonomous cognitive systems. He 
co-founded Syntigent B.V. to commercialize bionic signal processing 
technology.  
 

 Jaco Hofmann received the B.Sc. degree in computer 
science from TU Darmstadt in 2012, and the M.Sc. in embedded systems from 
TU Delft in 2014. He is currently working towards Ph.D. degree in computer 
science at TU Darmstadt. His research interests include application specific 
hardware accelerators, heterogeneous accelerator architectures, accessibility 
of FPGAs for researchers and software defined networking. 
 
 
 
 

 

  Jan Christiaanse received the M.Sc. degree in 
embedded systems from the Delft University of Technology. His research 
interests include reconfigurable computing and multi-core communication 
protocols. 
 

 Martijn van Eijk received the M.Sc. degree in 
computer engineering from Delft University of Technology. His research 
interests include blockchain-based electronic systems and crypto-currencies.  
 

 Georgios Smaragdos received the M.Sc. in computer 
engineering from the Delft University of Technology. Currently, he is a PhD 
student in the Neuroscience Department at the Erasmus Medical Center, 
Rotterdam, The Netherlands. His research interests include reconfigurable 
computing, fault-tolerant computing, and high-performance computational 
neuroscience. 
 

  (version 1) Christos Strydis received B.Sc. degree in 
electronics and computer engineering from Technical University of Crete, 



> IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS < 
 

12 

Greece, in 2003, M.Sc degree (honours) in computer engineering with a minor 
in biomedical engineering in 2005, and Ph.D degree in computer engineering 
from the Delft University of Technology, The Netherlands, in 2011.  
Currently, he is an assistant professor with the Neuroscience Department of 
the Erasmus Medical Center, Rotterdam, The Netherlands, and is also a chief 
engineer with Neurasmus BV, The Netherlands. He is the head of the 
computer-engineering lab in the department and leads the Erasmus Brain 
Project effort. Dr. Strydis has acted as technical-program-committee member 
in various international conferences. He has also peer-reviewed, as well as 
published manuscripts in well-known international conferences and journals.  
His research interests revolve around the topics of high-performance 
computational neuroscience and of next-generation implantable medical 
devices with a focus on implantable neuromodulators. 
 
(version 2) Christos Strydis received the Ph.D. degree in computer 
engineering from the Delft University of Technology. Currently, he is an 
assistant professor with the Erasmus Medical Center. His current research 
interests span from high-performance computing to low-power embedded (in 
particular, implantable) systems. Dr. Strydis is a member of the IEEE. 
 

 Alexander de Graaf received the M.Sc. degree in 
electrical engineering from Delft University of Technology in 1983. Since 
2010 he is senior design engineer at Delft University of Technology. His 
research interests include neuromorphic design, neural networks, 
analog/mixed signal simulation, and low-power design. 
 

 Carlo Galuzzi received the M.Sc. degree (cum 
laude) in mathematics from the Department of Mathematics at the University 
of Milan (in Italian: Universita' degli Studi di Milano, 'Statale'), Italy, in 2003, 
and Ph.D. degree in computer engineering from Delft University of 
Technology in 2009. He was post-doctoral researcher at the same university 
from 2009 till 2016. Since 2016, he is assistant professor at Maastricht 
University, Maastricht, The Netherlands.  
His research interests include instruction-set architecture customizations, 
reconfigurable and parallel computing, brain modeling, hardware/software co-
design, mathematical modeling, graph theory, and design space exploration. 
 

 Rene van Leuken received the M.Sc. and Ph.D. 
degree in electrical engineering from the Delft University of Technology in 
1983 and 1988, respectively. At the moment he is a professor at the Circuit 
and Systems group at Faculty of Electrical Engineering, Mathematics and 
Computer Science of the Delft University of Technology (TU Delft), The 
Netherlands.  
He has published papers in all major journals, conferences and workshops 
proceedings, and has received several best paper awards over the years. 
He has been involved in many major research and development projects: 
ESPRIT, FP6, FP7, JESSI, MEDEA, and recently in ENIAC/CATRENE, and 
ARTEMIS  projects. He is member of the PATMOS steering committee and 
the DATE Technical Program Committee.  
His research interests include high level digital system design, system design 
optimization, VLSI design, and high performance compute (DSP) engines. 
Currently, his major research activity is neuromorphic computing. 
 

 


