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Abstract—Simulation of brain neurons in real-time using

biophysically-meaningful models is a pre-requisite for
comprehensive understanding of how neurons process
information and communicate with each other, in eféct

efficiently complementing in-vivo experiments. Sta-of-the-art
neuron simulators are, however, capable of simulaig at most
few tens/hundreds of biophysically accurate neuronm real-time
due to the exponential growth in the inter-neuron ommunication
costs with the number of simulated neurons. In thigpaper, we
propose a real-time, reconfigurable, multi-chip syem
architecture based on localized communication, whiteffectively
reduces the communication cost to a linear growthAll parts of
the system are generated automatically, based on ehneuron
connectivity scheme. Experimental results indicatethat the
proposed system architecture allows the capacity aver 3000 to
19200 (depending on the connectivity scheme) biopsigally
accurate neurons over multiple chips.

Index Terms—Neuron network, biophysically accurate neuron
simulation, multi-chip data-flow architecture.

|I. INTRODUCTION

firing rate of each neuron in the network, as iifiaial neural
networks (ANNSs), e.g. perceptron [4], but, in aiidit by
amplitude, spike-train patterns, and the transdéz.rThe high
level of realism of SNNs and more significant cortapional
and analytic capabilities in comparison with ANNswever,
limit the size of the realized networks. Conseglyetihe main
challenge in building complex and biophysically-aete
SNNs is largely posed by the high computational dath
transfer demands.

In addition, biological NNs are characterized by- co
localized memory and calculations, and execute coatipns
with high degree of parallelism, for what conventaf von
Neumann CPU-based execution is not very well sigtdbue
to their inherent high-level of parallelism, recguofrable
hardware, such as field-programmable gate arraPGHs),
are capable of providing sufficient performance feal-time
and even hyperreal-time simulations of these ctilecand
distributed networks. Furthermore, the reconfigorat
property of FPGA provides the flexibility to modifthe
network topologies and the brain models on demded.

ONTINIOUS neuroscientific progress gradually led to thqzhikevich [2],[5]-[6], integrate and fire (IaF) [fnodel (and

Crealization of mathematical models of the neurolisce
and their intricate networks [1]-[2]; realistic meld, which
simulate biological behavior with a large levelaafcuracy, as
in the case of spiking neural networks (SNNs) Bl],[In
SNNs, propagated information is not just encodedthiy
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its extensions such as thieaky laF, laF-or-Burst [8],
quadratic laF [9]), Hodgkin-Huxley (HH) [10]-[12],
simplified Hodgkin-Huxley[13], extended Hodgkin-Huxley
[14]).

Small-scale special purpose systems, such as RQLE]S
intended for cortical-like computational modulesyplement
256 laF neurons. In [16], the system containingesatens of
thousands of leaky laF neuron cells are implemerdnd
Virtex-7 FPGA platform. In [17], analog-based Negrid
system replicates neurons as an electrical syst8m\Vith 16
Neurocores, i.e. the computation elements of thardigid,
the system is able to simulate over 1 million qa#idrlaF
neurons with billions of synapses. TrueNorth in J{Z9]
contains 4096 cores, totaling 1 million programneadigital
laF spiking neurons and 256 million configurablenayses.
Although significantly larger number of neurons cae
simulated when compared to the FPGA solutions, the
Neurogrid and TrueNorth platforms are not as flexib
concerning model changes, nor the neuron behasiobe as
easily observed. The models are not analyzed dgcafqns
in general, but only as implementations on the i@aer
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platform.  Additionally, no neuroscientific-experinte
instances with biological plausibility were congielé. Large
scale experiments are performed with large numbgeperal
purpose processors as in the SpiNNaker project §21\vell,
where over one million low power ARM cores are cected
by a fast mesh based interconnect link. Subseguetite
largest SpiNNaker system is able to simulate ower laillion
neuron cells of I1zhikevich type [2].

However, for electrochemically accurate neuron rlinde
which is a focus of our study, the conductance-thaselti-
compartment Hodgkin-Huxley model [10] is
Biophysically accurate models of biological systesisch as
the ones using the Hodgkin-Huxley formalism, arenposed
mostly of a set of computationally challenging diéntial
equations often implementing an oscillatory behavibthe
interconnectivity between oscillating neurons isoamodelled
(e.g. gap junctions, input integrators, synaps#sg, cells
become coupled oscillators. Consequently, all newstates
need to be completely updated at each simulateEmtstretain
correct functionality. As a result, cycle-accurateansient
simulator is necessary. The above difficultiessaaiated HH
models and multi-compartmental
connections, in conjunction with biophysically péihle
neuron network sizes, pose significant challenggmeaally
when using conventional computing machines.

i) Close to linear growth in the communication cagith
proposed data localization scheme and the resultiregr

growth in communication cost, 31x to over 200x more

neurons could be simulated in comparison to thee-sththe-
art designs, which are limited by the exponentialrgh in the
communication cost.

ii) The extendibility of the system over multiple ghito
build more accurate systems: the system maintdirean
growth up to 8 FPGA devices.

iii) The use of double floating-point arithmetic foetmost

requiredbiologically accurate cell behavior simulation, aad easy

implementation of various neuron network topologiesl|
communication schemes, as well as models and kihdalls.
iv) A high run-time configurability, which reducestheed
for resynthesizing the system. Additionally, adaptiof
routing tables, and changes to the calculationrperars are
also possible. In this way, the system reduces time
required for experiments with biophysically acceragurons.
v) A powerful simulator designed for high precisigpiking
neuron network simulations, but flexible enougtvéoused for
smaller neural networks. The simulator featuresfigareble

models with complegn- and off-chip communication latencies as wellnasiron

calculation latencies. All parts of the system gemerated
automatically based on the neuron interconnectahrese in
use. The simulator allows exploration of differesystem

The HH model incorporates the membrane potentiad, aconfigurations, e.g. the interconnection schemeveeh the

includes the concentration of various chemicalsjde the
neuron, in the calculations to represent its bejravihe
computational complexity of conductance-based nsdsl
orders-of-magnitude higher than laF models, posiag
significant challenge for their efficient simulatio For HH

neurons, the intracellular concentration of differehemical
compounds (ions), which affect how action poteatiate
initiated and propagate.

The paper is organized as follows: In Section he tell
abstract model and the hardware design configuratice

models, GPU implementations have been shown toebg |described. Section Il focuses on the system defigm a

efficient compared to reconfigurable hardware sohg [22]-
[23], even though providing notable speedups [24].

high-level perspective, including adjustments te tretwork
to scale over multiple FPGAs, synchronization betwe

In [12], a simplified version of the HH model isagsin an  clusters and connectivity, and structure generati@etion IV
FPGA based simulator that is able to simulate 40@iScusses implementation details including clusteositers,

physiologically realistic neurons on a Virtex-4 FR@evice.
Until recently, most HH models accelerated in rdigpmable
platforms, due to their efficiency, employed fixpdint
arithmetic. However, limited accuracy of fixed-pbin
representation results in a faulty representatfamearal spike
location, altering the functional behavior of theuron [25].

and the control bus for run-time configuration.Section V,
simulations and hardware utilization for differestenarios
including network and multi-chip performance aresanted.

Finally, Section VI provides a summary and the main

conclusions.

Il. THEINFERIOROLIVARY NUCLEUSCELL

The system in [11] simulates a biophysically actara” Abstract Model Description

representation of the neuron using floating-poirithenetic,
and the HH model. The cost of the biophysical amcylis a
low network size; the largest system proposed dostd
neurons. In our previous work [14], we could sinel&8

The neuron cells considered in this paper are éacat the
inferior-olivary nucleus (ION). The ION is an esply well
choreographed part of the brain [28]-[29]. Téxended (by
gap junctions) HH model based on experimental figsliin

extended HH neuron model cells (highly biophysically-[29] (Fig. 1) implements a neuron with three distin

accurate model [26]) with floating point arithmetio a Virtex
7 FPGA platform. In [23], a similar system is refthto
include up to 96 neurons.

In this paper, we propose an efficient multi-chigtadlow

compartments: the dendrite, the soma and the aXom.gap
junctions are part of the dendritic compartmentsaguently,
the dendritic compartment receives the extra ingaming
from the inter-neuron connection. The gap junctifwhich

architecture for thextended HH neuron cell and subsequentdiffer from typical synapses in that they are pyraectrical)
interconnected network [27], which exploits datadiity and are associated with important aspects of cell bieawas they
minimize network communications over one or mudipl are not just simple connections; rather, they imedignificant
FPGA devices. The proposed system provides sewenal and intricate electrical processes, which is rédédn their
aspects compared to existing approaches: modelling details.
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Fig. 2: Dataflow of aPhC. The dashed box on the left is the Axon/Soma
calculation. The one on the right is the dendriécuation. Cell states are
stored in the BRAM (memory). All in- and output datignals are connected

. . . to FIFO buffers (not shown) [31].
Fig. 1: Inferior olive neuron model [30].
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Computation FP operations per neuron i Rt el B
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Fig. 3: A diagram showing how the controllers aceided within the cluster

. . . . controller; the cluster done logic is excluded froiew. Dataflow of aPhC.
Every compartment includes biophysical attribui@s,state  11q gashed box on the left is the Axon/Soma caticula

parameters denoting its electrochemical state cantputation

is performed in all three compartments (and witbath gap  Simulations steps are identical to each other imseof
junctions connection itself). For the calculatioh @ single gperations performed.

parameter, one exponential function and several . ) )

multiplications and divisions need to be carriedt.ouB: ThelON Cell Design Configuration

Additionally, for realistic signal representatiohet use of  Operationally, the neuron network needs to compute
floating-point (FP) arithmetic is essential [25]hd total communicate simulated ION responses to their neighbnd
number of FP operations required for simulatingngle step the axon. We run both operation concurrently, aedisk
of a single neuron cell (including a single gapcjion) is 871 separate hardware architectures for computatiosetban the
(Table I). In am-cell network (), if each neuron maintains a multi-compartmental extended HH), and communication
constant number of connectionisto neighboring cells, the (Section Ill). We refer to a neuron computationtuas a
complexity of overall gap junction computation castrease Physical cell(PhC)". Within a PhC, the topology-dependent
as Og(nexnex&), where¢ is the connectivity density [30]. The (i.e. incorporating the neighbors coupling) dereddalculation
worst-case interconnectivity scenario occurs whef, i.e. (7dnd)) and  topology-independent Axon+Soma  (77a+s)
all-to-all neuron connection, resulting y(n?) complexity. ~calculation run in parallel (Fig. 2) [31]. The to&mount of
All remaining, non-gap junction computation increas CYcles eactPhC requires genc) is

linearly o (n;) since the rest of the applica'_tion is of purely Dove =MaX0ygTars) (1)
dataflow nature [30]. The neuron model defines @ifely a

transient simulator through computing discrete outpxon The Axon+Soma computational unit computes the axon and
values in time steps which, when integrated in tineereate soma state, and updates a set of cell parametesssdon the
the output response of the axon. The three compatsrand current cell compartment states and cell parameters

gap junctions are evaluated/updated concurrentlyeath

simulation step. The model is calibrated with a wation ! The qomput_ation units are called physical cétsQs) to recall that the_y
. L . A are physically implemented in hardware, and tha tutputs of their
time step of 50 pusec, where this simulation step dlefines

8 - computations mimic the actual inferior-olivary newus (ION)-cell behavior.
the real-time behaviour of the whole network. See [29] for additional information.
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Internally, the dendrite calculation is dependemttioe result

state based on the current dendrite state, thehinaiong

of the Axon+Soma calculation to calculate the new dendritedendrite states, and finally an intermittent reggogenerated

state. Externally, both calculations use the saxp®ment co-

by the Axon+Soma calculation unit. Deng, computes the

processor ExpC). The exponent operations, compared tooupling effect of neighboring cells in the neurwtwork; its

standard operations, require relatively more ressirand
cycles to complete.

To reduce the required amount of resources withduerse
effect on the calculation latency, we utilize agsnexponent
instance over multiple neuron calculations [31]anKahn
process network [32]. As thaAxon+Soma calculation has a
longer critical path (and is topology independernit),is
scheduled with a higher priority. Each calculatieithin a
cluster is synchronized, resulting #¥won potentials being
calculated at predictable times. The dendrite dafmn is,
however, not synchronized, giving it more flexityilover the
exponent co-processor. By keeping the critical péthin the
dendrite calculation to a minimum, and by allowih¢p start
processing new network neighbors before the cuarpbnent
is known, each simulated cell can quickly be scaledto
allow more connections within the neuron networkeT
exponent co-processor is, thus, constantly beingnginew
values to calculate, with high priority tasks aimty after a
deterministic amount of cycles.

The Axon+ Soma Calculation Unit Configuration: Exponent
operands within th@&xon+Soma calculation unit consists of an
addition and multiplication carried out by two ctargs §, )
on a single cell state (compartmental potential):

)

The controller for the application specific co-peesor
(ASC) insures that the correct state potential, apdrand

e/, p=(Sate+ ) x B

input is determined by the current dendrite stiag isfetched
from the BRAM memory, and the neighboring dendstiges
requested from the memory controller. Dgpds scheduled
around the exponent operation and is split into tvants:
computations that are dependent of the exponemnitrem
those that are not. Degg combines the intermittent
response received from theon+Soma calculation unit and
results from the Deng to generate a new dendrite state
potential. The resulting dendrite state from thgemtion is
then locally updated and communicated to the memory
controller. The dendrite compartmental computatiatency
77dend2 can be written as function of

Naerd = MAXQ g Tavs) + T
Nain = (@) + MaXGyyo0r, @ X Np ) + WX Ny

4)

wherea is the amount of cycles that takes place befooh ea
(low priority) exponent calculationNp is the number of
dendrites,J is the start-up delay partly dependent on the
amount of dendrite calculations that share a meroorg, and
¢ is the grouping factor. A blocking timg. is involved if
the exponent calculation is being blocked by anothsk after
all o calculations are performed, aads the number of cycles
after the result of the exponent calculation iswno

The Exponent Core: We schedule the exponent operands
through aread scheduler, i.e. the scheduler that feeds
exponent operands onto a single channel (vectotfh a&n
(additional) addreds The vector is fragmented over the

constants 4, f5) are stored in the registers at the correct timeychitecture that calculates the exponent, andifa relgister

Multiple PhCs are scheduled around a singC to reduce
the required resources. Consequently, the ASCjisstdl to
receive multiple cell states from multiple sourcasd to send
a source address with the exponent operand ase&sidl)
output. The calculation can be subdivided in twgnsents,
fetch and schedule, respectively. Before any catmrs can
be carried out, the hardware necessitieetith the required
cell states and parameters from the local memohylevalso
sending out a request to the memory controllereteive a
(non-zero) impulse value. With the fetched valuée t
Axon+Soma calculation unit can partly offload its calculatio
to the ASC, while starting calculations that ar@eipendent of
the results from the exponent calculations. Thgs is

that keeps track of where the current calculatamt(ess) is in
the pipeline. When the exponent is calculated, la \ldress
is presented at the end of the shift register,adigg a write
back to a specific (addressed) output FIFO.

C. ThelON Cell Cluster Controller

The neuron cells are connected with decreasingaitity
the further they are apart [1]. The individual cartgtion
units, i.e. physical cells that are in a close prity to each
other are placed within a confinement of a (neighlstuster.
The amount of clusters implemented in the FPGA is based
on the critical resources and is determined=#hC,,/p. The
cluster controller relates new values to the calboh

determined by the number BhCs that share a co-processorarchitecture when requested, and store and rouédr th

and how the axon and soma calculations are schiedule
Mass :”a+s(base) + yX(V _1) _H(V) (3)

wherenaspase) IS the base latency, i.e. of&#pC is connected

responses. Each cluster controller is designedndreeveral
parallel running hardware architectures, that grelsronized
by FIFO's. In Fig. 3, an example is given of a tdus
controller with two connecteldhCs.

to only onePhC, y is the number of exponent calculations

required by the Axon+Soma calculation unit, v is the
maximum number ofPhCs sharing aExpC, and 6 is the
overlapping factor.

The Dendrite Calculation Unit Configuration: The dendrite
calculation unit computes the new dendrite compantsad

2 Within the dendrite calculation, Degqgh, combines the 2 results after
cycles.

3 The high priority is already addressed by the AS@w priority inputs
are only passed as operands, and are given ansadased on which FIFO
they are read from.
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12C/SPI {[aoc] anc] anc] aoc][pac][pac][oa][oad]:
Control Bus | 2 2 | lteration | |
Interface Controller Packetizer

Packets

Fig. 4: The system overview. The computing elemétts PhCs) are grouped inside a cluster to make communicdigtween neighboring cells fast. These
clusters are connected in a tree topology NoC.rohger fan-out in this case is 2, and can be chdiageording to the requirements of the implememitafl he

same holds true for the numberRHfCs in any cluster [27].

The init controller receives a coded set of initializationstart signal is received by memory controller ahd bit is

parameters (e.g. the cluster identification numteerlocal
routing table, initial parameters for the lod@hCs and the
dendrite states of all cells) through the initiation channel.
The write controller communicates with tReCs by request.

issued that indicates that the next state memagkbis now
current state and vice versa. This prevents menbaing
overwritten by the read controller before it canseat to the
PhC. The cluster controller falls into an idle statbem the

If the PhCs are not initialized and a request arrives, the¢ewnri connectedPhCs have finished calculations and all newly

controller transmit the initialization parametens a pre-
defined order starting with the dendrite state. iBmrthe
simulation, if a dendrite request is received, thvete
controller looks up (i.e. with the help of the lbgauting
table) which dendrite states of the neighboringsciélshould
send. Consequently, the write controller sequdntisénds
each dendrite state addressed on the columnstafotivalf an

generated results have been stored and/or sehetootiting
network.

IIl.  MULTI-CHIP DATAFLOW ARCHITECTURE

Neural connectivity have been previously implemdnte
through shared bus networks [14], however, bandwidt
restrictions limit the scalability of such approash

applied curren_t request is received, the local egklis used to Alternatively, local buses between adjacent neuramanged
get the applied current from the BRAM storage. Thg gne-dimensional [19] or two-dimensional [21]dyrietwork

neighboring cell addresses are placed column-wis¢hée
routing table, while each row represent where alla@ell is
located in the 1O topology. After a cell responseyénerated,
the pre-read controller determines the global s the
cell within the neural network.

If the cell response is an axon value, the signaknt to the
routing network; if it is a dendrite response, tiev value is
duplicated and sent both to the routing networkoathe read
controller through an internal FIFO for storage.eTtead
controller authorize storage of the applied IONrents and
dendrite responses in the BRAM, i.e. the read ctietr

have been proposed for increased routing flexybilitowever,
one of the most notable features of the real bnaimvorks is
their high degree of clustering, with nodes (nesjon
connecting preferentially to others in their local
neighbourhood [33]. The large density of local caetions in
brain networks may have several functional and wiaiary
benefits, such as enhanced communication speeds$, an
minimal wiring and metabolic costs. To scale comivation
linearly with neuron count we emulate the cortex’s
hierarchically branching wiring patterns.

In the clusters, configurable routing tables defiog PhCs

determines which ionic currents will be admitted bBére arranged within the neuron network. By attaghisach

calculating the relevant global address range basedhe
cluster identification number and the amount ofsctiat are
connected to the cluster controller. The dendritdes and
applied currents are stored in the BRAM in two gacurrent
and next state memory. At the start of each sinoriatound a

cluster to a binary tree network, responses betvirRb€ls are
shared (Fig. 4) [27]. Furthermore, through the tode of the
tree network, a current impulse can be applieditBlCs, and
all output results of the neuron network streamed.
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Fig. 5: The router diagram [27].

The design can be tuned using 4 parameters: théeruofh
clusters, the number &hCs, the amount of shared exponen
coprocessorsvithin a cluster, and the time sharing factor fo
eachPhC.

A. Localize Communication Between Clusters

The data from other cells is read seldom inRh€ [1],[14].
Consequently, a single cell does not require menaaoess
each clock cycle, allowing for a shared memory glesvith
time-shared instead of parallel memory access. ffan
advantage is that the common case of close comationicis
still optimal. The number dPhC around one shared memory
is limited by placement and wire length constrainfsthe
FPGA technology in use.

B. Connecting Clusters: Routers

In the proposed architecture, each router hasnztoldren,
and each child can be either a cluster or anothater. The
clusters transmit only two types of data, i.e. déiwdand axon
hillock potentials. While cell dendrite potentiadse shared
among all IONs, axon hillock potentials are onlyegi as an
output. Consequently, the router is designed witte t
following rules:i) in a balanced tree network each router i

r

t
Fig. 6: The single FPGA implementations are corggasing a ring topology

network. The FPGA are synchronized via a centratrodler.

However, due to hardware limitations a channel migh
up before it is emptied (read). Since no packetl®ved to be
dropped, packets that cannot be forwarded rightyawa.
when the receiving buffer is full, are stored foelayed
delivery.

The width of this delayed buffer Ig+[log.(n.)] bit, where
by is the amount of bits for a packet, amgis the amount of
outputs of the router. By designing the router atba small
finite state machine (FSM), each symbol can bequhss 1 or
2 channels every 2 clock cycles. To avoid caseshith the
router continuously try to deliver delayed packébs full
routers, new packets always have precedence oxafelhyed
ones. Since packet forwarding is not aware of theplete
network connectivity, the components are efficiemd with
limited overhead.

C. The Control Busfor Run-Time Configuration
S Due to the high number of components, the most coniyn

connected to one bi-directional upstream and twe bised bus systems, e.g. Wishbone or Serial Peripiméeaface

directional downstream channei$) new dendrite potential
values can arrive through any channel and are gaalemg
the other two channels, and) new axon hillock potential
values only arrive through one of the two downsastme
channels and are then transmitted to the upstréamel.

The data produced by each cell in the network aedcell
identification number and are combined in a pacBaesed on
a static routing table (which reflects the way thells
communicate), each router decides in which directie. to
which cells, the packet has to be forwarded to.hiithe
proposed design, each router (Fig. 5) is connedted3
channels and is implemented around a single comutéR
Logic) together with a (FIFO) buffer. The channetssist of
an input and output FIFO, forming a bi-directiomdlannel.
The router logic reads every channel in a roundnrdipe
fashion. If a new packet is present in one of thanoels it is
read (and based on the rule set), the packet nsridted to
one or two of the other channels.

(SPI), are not applicable. In addition, these busegiire a
significant number of wires to address every conembrn the
system. Consequently, we designed a custom-madevhich
follows the tree structure of the NoC.

By traversing the tree, all components can be adddg
from the routers down to the clusters and to eRbl.
Importance of throughput is reduced, since all igumétion is
set while the system is paused. The amount oftdatamitted
via the bus is low with the largest transmissioreingy
parameter changes of a cell. A bus command congpoisevo
parts, i.e. the address and the payload. Correspgigdthe
bus first opens up a connection to a specific campbusing
the address, and then forwards the payload todhgaonent.
Each component in the system, e.g. a router ouster, has
an attached control bus router that can either dodvithe bus
signal to any of its children, or forward the bugnal to the
attached component.
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Although adding another tree layer promises easy
extendibility, the limited connection possibilitiesf each
FPGA, and need for an extra FPGA for routing betwt®
FPGAs containing the clusters, however, restrigirthuse.
Consequently, as most communications occur between
neighboring FPGAs, the FPGAs are connected ingbased
topology (Fig. 6), which is less complex in ternfsapology
generation and administration of the routing tables

To synchronize the communication between the dlsiste
one of the FPGAs contains a controller that handleshe
synchronization packets. In large systems this cconipact
the time needed to complete the iteration. To pretls, we
use one of the FPGAs as a master. Consequenthsighal
does not have to cross multiple stages, the rue isnconstant
for any number of cells, and signal can finish dteEm
immediately. The master FPGA, in turn, issues tn round
signal when adequate.

IV. EXPERIMENTAL RESULTS

The system is automatically generated using a human
readable configuration file, which includes all ennt
parameters of the system and can be easily modifleding
exploration of different cell communication schemssveral
fan-out values, etc. The control interface includes
R initialization, setting ofl,,, direct memory access (DMA)

Fig. 8: FPGA resources utilization. (scatter mode) and Ethernet user datagram prot@sbP)

i . transfer from the FPGA to the PC, and interrupipsup After
D. Adjustments to the Network to Scale over Multiple FPGAS the design is configured with the desired accu(@2y64-bit),

Since the communication frequency decreases ctostre it js synthesized through the Vivado HLS tool tonemite
root of the network tree, multiple FPGAs can bermmted at VHDL code, and test bench files.
the highest level without significant impact onfpemance.
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Fig. 9: Neuron network running on the Xilinx VirtdkXC7VX550 FPGA: output waveform of the inferidive cell model in a network configuration, axon
potential vs. brain-simulation time.
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TABLE II- IMPLEMENTABLE CELLS ON AFPGAWITH CRITICAL RESOURCES UNDERLINED

Implementation

FPGA Accuracy Clusters PhC TSF ExpC LUT FF

[14]2 64b NA 8 6 NA 240k 209k
Virtex 7 64b 9 2 23 1 324k 202k
Virtex 6 64b 1 7 20 2 124k 77k
Spartan 6 64b 1 1 8 1 23k 21k
[23]¢ 32b NA 8 12 NA 251k 162k
Virtex 7 32b 18 2 33 1 311k 190k
Virtex 6 32b 4 4 29 2 128k 85k
Spartan 6 32b 1 4 18 2 36k 23k

Resources (Absolute)

Resources (Total Utilization) Results
DSP BRAM LUT FF DSP BRAM SimC® Cost/SimC¢
1384 42 69.4% 30.2% 48.1% 1.8% 48 $144
1215 233 93.7% 29.2% 42.2% 19.7% 414 $155
634 122 82.9% 25.8% 82.6% 14.7% 140 $20.1
13 27 255%  116%  628%  10.1% 8 $296
1600 804 83% 21% 57% 78% 96 $51.2
1008 557 90%  275%  35% 23.6% 1188 $54
480 192 854%  285%  625%  23.1% 464 $6.1
152 33 399%  128%  844%  12.3% 72 $33

#Only estimates are given in the previous desigitt, b the same Xilinx Virtex 7 XC7VX550 FPGA boaad the current design.
PWe refer to each (neuron) node in the neuron nétasa Simulated CelS{mC), whereas we refer to the hardware used to simttit cells as BhC.

‘Reference costs were taken from [40].

YExtended HH model, 22.2k operations per neuronrits 1100% interconnectivity density, 2131.2 MFLOPS.

TABLE Ill- HARDWARE UTILIZATION OF THE MOST IMPORTANT COMPONENS OF THE SYSTEM ON AXILINX VIRTEX XC7VX550FPGABOARD

Model Cluster PhC TSF BRAM % DSP % FF % LUT % Neurons
Hodgkin-Huxley 18 2 33 236 35 215 90 1188
Izhikevich 5 8 70 38 22 25 89 2800
Integrate and Fire 5 8 75 23 20 16 54 3000

25k T T T T T T T

20k b

15k T+ B

—+— each iteration

10k —+#—— when FIFO empty
—=&— when FIFO empty, multiple iterations

Iteration Cycles

— g:::,::ﬁ:;:;;ﬁ,ir,ﬁ; e — o 5

[ B

0 I I I I I I I
2 3 4 5 6 7 8 9

Router Fan-Out
Fig. 10: Three packet injection schemes. Injectireggpackets after each round
through all input FIFO results in the slowest itema times. Injecting only
when all FIFO are empty for one round or for mudtipounds achieves
comparable performance. Injecting after one rouhihgut inactivity results
in the best overall performance.

10
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2 3 4 5 6 7 8 9 10

Router Fan-Out
Fig. 11: Comparison of iteration performance fdfedent cluster sizes. Small
routers perform better than large routers - the pegforming configuration
consists of small clusters and small routers atRh@s per cluster and a fan-
out of two.

The multi-FPGA system experimental setup is illatgd in
Fig. 7, while FPGA resources utilization is showrHg. 8. In
Table II, the hardware utilization for double/siadloating-
point precision for the main components of the exystare
shown in terms of flip-flops (FF), time sharing tiaic (TSF),

block RAM (BRAM), and look-up tables (LUT); smaller
components, like the synchronization circuits, amgtted for
clarity. All results noted are for the 8-way continty
inferior-olivary network model. The minimum timeténval to
achieve a realistic representation of the neurdinbedavior is
determined as in [29]. For comparison purposeslemiblists
hardware utilization of different spiking neuron dets, i.e.,
Xilinx Virtex 7 XC7VX550 FPGA can accommodate 1188
32b-accurate Hodgkin-Huxley type neuron cells, and
approximately 2800 and 3000 Izhikevich, and integrand
fire type neural cells, respectively.

The neuron spiking properties are governed by pleeific
parameter sets: these properties have well-defiodg in
defining explicit brain functions, e.g. the corticeeurons with
tonic bursting contribute to the gamma-frequencsillagions
in the brain [34]. In theextended HH model [29] a
compartment is added to model the axon hillockhef ¢ell
and enable the model to generate axonal burstodifis
spikes. The model includes a high- and low-thresioalcium
current, calcium-dependent potassium current, and
potassium and sodium current. All compartments hkee a
passive leak current. Most neurons are quiescentdmu fire
spikes when stimulated. When the pulses of theeatirare
injected at the input, the neuron fire a train pfkes, the
process called tonic spiking [35]. If such neurofise
continuously, it indicates that persistent inpubffered to the
neurons. A specific neuron could fire only a singpéke at the
onset of the input, and could subsequently stagspant, i.e. a
response called phasic spiking. Specific neuromsderiodic
bursts of spikes when stimulated. Similar to theagih
spiking, the modelled neurons can show phasic iogrst
behavior, which is needed to transmit saliencyhefinput, to
overcome the synaptic transmission failure and c¢edu
neuronal noise [36], or can be used for selective
communication between neurons [37]. Intrinsicallyrdting
excitatory neurons [38] can exhibit a mixed typespfking
activity.

a
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Fig. 12: Comparison of systems with different aussizes; the routers are
kept constant at fan-out of two; clusters with tfeur and eighPhCs achieve
the shortest iteration times, while larger clustesgenerally slower.
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Fig. 13: Comparison between different cluster sipedifferent amounts of
cells. The neighbor connection scheme is used acl eell calculation takes
534 cycles. The systems use a router fan-out of e baseline design is
from [14]; all presented configurations of the neystem meet the brain real
time at 100 MHz. Furthermore, all of them sciafearly with the number of
cells. The baseline on the other hand soadpsnentially.

A visualization of the ION axon potentigt,o, run on the
FPGA for 1s brain simulation time (with associategliron
parameters) in a biophysically accurate neuron otw
consisting of 768extended Hodgkin-Huxley neuron cells is
shown in Fig. 9. Here, an impulse of -1mAfcis applied
after 0.19s for a duration of 100 ms with a restirgural
network surface current of 0.5 mA/&nSimilar patterns are
found with biological test [39]. Simulating idergicnetwork
settings in SystemC require 59 minutes agpfi-time on a

openSUSE 13.1 (x86_64) system with Intel® Xeon® €PU
E5-1620 3.5 GHz processor and 32 GB of memory:

Consequently, a FPGA ported design yields > 35@®&ed-up
(performed in a real-time). The hardware resuléscampared
to a golden-reference file, containing the expectaldies of
the simulation. Observed error is very low, lesantld.2x10

% for cell resting state (when most internal cedlrigbles
change rapidly), and at cell firing state, for b8thand 64-bit
configurations. Design Space Exploration: For the router
performance, the time when delayed packets gettegeinto
the network is essential: we compared three imjacthodels
(Fig. 10), i.e. packets are injected after each thunugh all
input FIFO, packets are only injected if the FIF@vé been
empty for a complete round, and packets are injeifteéhere
has been no activity on the inputs for 10 rounds.

8k

—#— 2ICs 2 cycles
—— 2ICs 8 cycles
k| ——2Cs 32 cycles ]
4 ICs 2 cycles
—=e—41Cs 8 cycles i
4Cs 32 cycles
—H—8ICs 2 cycles q
—*—8ICs 8 cycles
—+—81ICs 32 cycles

Tk

5k -

a4k -

Iteration Cycles

3k

2k -

1k

0
0 32 6 128 256

Cells
Fig. 14: Comparison between different system caméiions utilizing
between one and eight chips; the multichip systatilize the packet based
synchronization method.

2.5k

—+*— 2ICs 2 cycles
—— 2 ICs 8 cycles
—*— 2ICs 32 cycles
41Cs 2 cycles
—H5— 41ICs 8 cycles
41Cs 32 cycles
——— 8ICs 2 cycles
—*— 8ICs 8 cycles
—=<— 81ICs 32 cycles

2k -

1.5k -

1k

Iteration Cycles

0.5k -

0 1
0 32 64 128

256 512

Cells

Fig. 15: Comparison between different system caméijons utilizing
between one and eight chips; multichip systemszeatithe dedicated wire
based synchronization method.

Injection after each iteration is not feasible aedults in
very long iteration times. Fig. 11 highlights thiéfetent fan-
out in respect to cluster sizes. Small cluster wtihall routers
and bigger clusters with large fan-out (>8) provitie best
overall performance. The best overall performascachieved
by 2 PhC with a router fan-out of 2 with 4012 cycles. The
cluster size choice is illustrated in Fig. 12. Adlters are kept
at a fan-out of 2 (i.e. optimal fan-out as showrkig. 8). Due
to the fact that all th®hC of a cluster time-share a memory,
the clusters with mor&hCs perform worse, especially at a
higher number of cells: the difference for 2048xcbktween 2
PhCs clusters and 1BhC clusters is 30%.

Single FPGA Performance: Comparison between different
cluster sizes for different amounts of cells igdtrated in Fig.
'3. The absolute difference in execution time fart8 512
cells is 354 cycles, and 191 cycles in the worsed@2PhCs
system). While the proposed system scélesarly with the
number of cells in the system, the baseline [l43lesc
exponentially. Considering an average increase in run-time of
120 cycles for the twice the amount of cells, thaximum
number ofPhC on a single chip can be estimatedyedc,-
Co)/120, wherec, is the number of iteration cycles available
for one iteration, i.e. at 100 MHz within the brai@al-time
boundary it leads to 5000 cycles, angstands for the amount

4 The maximum number of cell states that can be atespwithin the
model (in the case of the evaluated, high-detd#riar-olive model, the
simulation time step is 5@s [29].
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of cycles currently used, i.e. 4372 cycles at 5&flsdhe

value receivedy, denotes the amount of times the number of

cells in the system can be doublg&5.23. Thus, the system
supports more than 19200 cells on one chip fomisighbor
connection scheme. For normal connection modesystem
requires 4597 cycles at 512 cells. The increaséenation
time for the twice the amount of cells is 155, legdo y=2.6
doublings, and hence, more than 3000 cells on bipe ¢

Multi FPGA Performance. Comparisons are performed
using both the dedicated wire, as well as the paoksed
synchronization methods. In contrast to the pabkesed
approach, in a dedicated controller method thatoisnected

with each chip, no packet has to cross multiplep chi

boundaries. For the normal connection scheme tdeated
controller performs slightly better than the packssed
controller (Fig. 14). The dedicated controller systis 3.84
times faster than the packet based approach aip® ebith
very slow communication (Fig. 15). For faster castion
speeds on the other hand the difference in comratiaictime
is in the order of 1 %.

V. CONCLUSION

Current neuron simulators, which are precise enotagh
simulate neurons in a biophysically-meaningful waye
limited in amount of neurons to be placed on thip,cthe
interconnect between the neurons, run-time cordigjlity
and the re-synthesis of the system. In this papemropose a
system that is able to bridge the gap between pipal
accuracy and large numbers of cells (19200 cetls\éighbor
connection mode and over 3000 cells in normal cotiore
mode). The cells are grouped around a shared meimory
clusters to allow for instantaneous communicatiGtusters
that are close communicate using only one hopem#iwork;
clusters that are further away communicate lesgqufrstly
and, consequently, the penalty for taking multipbgs is less
severe. Added advantage is that the system carnxtbaded
over multiple chips without significant performanpenalty.
This combination of clusters and a tree topologivnek-on-
chip allows for almost linear scaling of the systéia provide
run-time configurability, a tree-based communicatious is
used, which enables the user to configure the ativity
between cells and change the parameters of thelatdns.
As a result, re-synthesizing the whole system jtst
experiment with a different connectivity betweerlscés not
required. The user has to enter the amount of metiro the
system as well as the desired connectivity schémmn this
information, all required routing tables and tomiés are
automatically generated, even for multi-chip systemi
porting the network to the FPGA vyields at least esav
thousand simulation speed-up in comparison withte3y€
simulation, with negligible loss of accuracy.

REFERENCES

W. Gerstner, W.M. Kistler, Spiking neuron modelingée neurons,

populations, plasticityCambridge University Press, 2002.

E.M. Izhikevich, “Which model to use for corticabiking neurons?”,

|EEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063-1070,
2004.

(1]
(2]

10

[3] W. Maass, “Noisy spiking neurons with temporal cadihave more
computational power than sigmoidal neurons”, inNibzer, et al. (ed.),
Neural Information Processing Systems, MIT press, pp. 211-217, 1997.

W. McColloch, W. Pitts, “A logical calculus of thdeas immanent in

nervous activity,”Bulletin of Mathematical Biophysics, vol. 5, pp. 115-

133, 1943.

K. Cheung, S.R. Schultz, W. Luk, “A large-scaleksmy neural network

accelerator for FPGA systemdhternational Conference on Artificial

Neural Networks and Machine Learning, pp. 113-120, 2012.

D. Pani,et al., “An FPGA platform for real-time simulation of igmg

neuronal networks'Frontiersin Neuroscience, vol. 11, pp. 1-13, 2017.

H. Shayani, P.J. Bentley, A.M. Tyrrell. “Hardwareglementation of a

bio-plausible neuron model for evolution and growfhspiking neural

networks on FPGA"NASA/ESA Conference on Adaptive Hardware and

Syst., pp. 236-243, 2008.

G. Smith, C. Cox, S. Sherman, J. Rinzel, “Fourieralgsis of

sinusoidally driven thalamocortical relay neuronsdaa minimal

integrate-and-fire-or-burst ModelReurophysiology, vol. 83, pp. 588-

610, 2000.

[9] G.B. Ermentrout, “Type | membranes, phase resettingves, and
synchrony,”Neural Computation, vol. 83, pp. 979-1001, 1996.

[10] A.L. Hodgkin, A.F.Huxley, “A quantitative descripti of membrane
current and its application to conduction and etich in nerve”,
Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952.

[11] Y. Zhang,et al., “Biophysically accurate floating point neuropessors
for reconfigurable logic”| EEE Transactions on Computers, vol. 62, no.
3, pp. 599-608, 2013.

[12] S.Y. Bonabi, et al., “FPGA implementation of a biological neural

network based on the Hodgkin-Huxley neuron modeFontiers in

Neuroscience, vol. 8, pp. 1-12, 2014.

M. Beuler, et al., “Real-time simulations of synchronization in a

conductance-based neuronal network with a digiRGR hardware-

core”, International Conference on Artificial Neural Networks and

Machine Learning, pp. 97-104, 2012.

M. van Eijk, C. Galuzzi, A. Zjajo, G. Smaragdos, &trydis, R. van

Leuken, “ESL design of customizable real-time neunetworks”,|EEE

International Biomedical Circuits and Systems Conference, pp. 671-674,

2014.

N. Qiao, et al.,, “A re-configurable on-line learning spiking

neuromorphic processor comprising 256 neurons &8k kynapses”,

Frontiersin Neuroscience, vol. 9, pp. 1-17, 2015.

J. Luo, G. Coapes, T. Mak, T. Yamazaki, C. TinDiegenaar, “Real-

time simulation of passage-of-time encoding in belem using a

scalable FPGA-based system’EEE Transactions on Biomedical

Circuitsand Systems, vol. 10, no. 3, pp. 742-753, 2016.

B.V. Benjamin, et al., “Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulationBfpceedings of IEEE, vol.

102, no.5, pp. 699-716, 2014.

[18] A. Andreou, K. Boahen, “Synthetic neural circuising current-domain
signal representationsJournal of Neural Computation, vol. 1, no. 4,
pp. 489-501, 1989.

[19] P.A Merolla,et al., “A million spiking-neuron integrated circuit wita
scalable communication network and interfacg&ience, vol. 345, no.
6197, pp. 668-673, 2014.

[20] B.U. Pedroni,et al., “Mapping generative models onto a network of
digital spiking neurons’|EEE Transactions on Biomedical Circuits and
Systems, vol. 10, no. 4, pp. 837-854, 2016.

[21] J. Navaridaset al., “Understanding the interconnection network of
SpiNNaker”,International Conference on Supercomputing, pp. 286-295,
2009.

[22] G. Smaragdot al., “Real-time olivary neuron simulations on dataflo

computing machines,3upercomputing, J. Kunkel,et al., eds., Lecture

Notes in Computer Science, pp. 487-497, Springertational.

G. Smaragdost al., “FPGA-based biophysically-meaningful modeling

of olivocerebellar neurons”,International Symposium on Field

Programmable Gate Arrays, pp. 89-98, 2014.

H.D. Nguyen, Z. Al-Ars, G. Smaragdos, C. Strydig\ctelerating

complex brain-model simulations on GPU platformEEE Design,

Automation, and Test in Europe Conference, pp. 974-979, 2015.

[25] Y. Zhang, et al., “A biophysically accurate floating point somatic
neuroprocessor”, |IEEE International Conference on Filed
Programmable Logic and Application, pp. 26-31, 2009.

[26] P. Bazzigaluppiet al., “Olivary subthreshold oscillations and burst
activity revisited”,Frontiersin Neural Circuits, vol. 6, no. 91, pp. 1-13,
2012.

[4]

(5]

(6]
(71

(8]

(13]

[14]

[15]

[16]

[17]

(23]

[24]



> |EEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEM <

[27] J. Hofmann, A. Zjajo, C. Galuzzi, R. van Leuken,ullitchip dataflow
architecture for massive scale biophysically adeuraneuron
simulation”, International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 5829-5832, 2016.

C.l. De Zeeuwet al., “Spatiotemporal firing patterns in the cerebefly
Nature Review Neuroscience, vol. 12, no. 6, pp. 327-344, 2011.

J.R. de Gruijlet al., “Climbing fiber burst size and olivary subthrekh
oscillations in a network settingPLoS Computational Biology, vol. 8,
no. 12, pp. 1-10, 2012.

G. Smaragdos, et al., “Performance analysis of accelerated
biophysically-meaningful neuron simulationsgiternational Symposium
on Performance Analysis of Systems and Software, pp. 1-11, 2016.

G.J. Christiaanse, A. Zjajo, C. Galuzzi, R. van kemy “A real-time
hybrid neuron network for highly parallel cognitiveystems”,
International Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 792-795, 2016.

G. Kahn, “The semantics of a simple language forralfs
programming,”Information processing, J. L. Rosenfeld, ed., Stockholm,
Sweden: North Holland, Amsterdam, pp. 471-4754197

C. Mehring, U. Hehl, M. Kubo, M. Diesmann, A. Aais “Activity
dynamics and propagation of synchronous spikintpdally connected

[28]

[29]

(30]

[31]

(32]

(33]

. Amir Zjajo received the M.Sc. and DIC degrees frin@
Imperial College London, London, U.K., in 2000 ahé Ph.D. degree from
Eindhoven University of Technology, Elndhoven, TKetherlands in 2010,
all in electrical engineering. In 2000, he joinehilips Research Laboratories
as a member of the research staff in the Mixed&i@ircuits and Systems
Group. From 2006 until 2009, he was with CorporBiesearch of NXP
Semiconductors as a senior research scientist.0D9,2he joined Delft
University of Technology.

Dr. Zjajo has published more than 80 papers inreefeed journals and
conference proceedings, and holds more than 10 &i€n{s or patents
pending. He is the author of the bodksin-Machine Interface: Circuits and
Systems (Springer, 2016),Low-Voltage High-Resolution A/D Converters:
Design and Calibration (Springer, 2011, Chinese translation, China Maghin
Press, 2015) an8tochastic Process Variations in Deep-Submicron CMOS
Circuits and Algorithms (Springer,
Technical Program Committee of IEEE Internationginosium on Quality
Electronic Design, IEEE Design, Automation and TiedEurope Conference,
IEEE International Symposium on Circuits and SystefBEE International
Symposium on VLSI, IEEE International SymposiumNenoelectronic and
Information Systems, and IEEE International Confese on Embedded
Computer Systems.

His research interests include energy-efficientedisignal circuit and system
design for health and mobile applications, datsssenaking, sensor fusion,
and neuromorphic electronic circuits for autonomouognitive systems. He
co-founded Syntigent B.V. to commercialize bioniggnsl processing
technology.

science from TU Darmstadt in 2012, and the M.Senedded systems from
TU Delft in 2014. He is currently working towards.P. degree in computer
science at TU Darmstadt. His research interesisdecapplication specific

hardware accelerators, heterogeneous acceleratoitegtures, accessibility
of FPGAs for researchers and software defined n&mg.

Jaco Hofmann received the B.Sc. degree in compute

11

random networks,Biological Cybernetics, vol. 88, no. 5, pp. 395-408,

2003.

C.M. Gray, D.A. McCormick, “Chattering cells: Sufieial pyramidal

neurons contributing to the generation of synchusnascillations in the

visual cortex,"Science, vol. 274, no. 5284, pp. 109-113, 1996.

J.R. Gibson, M. Belerlein, B.W. Connors, “Two netiof electrically

coupled inhibitory neurons in neocorteXyature, vol. 402, pp. 75-79,

1999.

J. Lisman, “Bursts as a unit of neural informatidhaking unreliable

synapses reliableTrends in Neuroscience, vol. 20, pp. 38-43, 1997.

E.M. Izhikevich, N.S. Desai, E.C. Walcott, F.C. lepnsteadt, “Bursts

as a unit of neural information: Selective commatian via resonance,”

Trendsin Neuroscience, vol. 26, pp. 161-167, 2003.

B.W. Connors, M.J. Gutnick, “Intrinsic firing pattes of diverse

neocortical neuronsTrends in Neuroscience, vol. 13, pp. 99-104, 1990

N. Schweighofer,et al., “Electrophysiological properties of inferior

olive neurons: a compartmental modelgurnal of Neurophysiology,

vol. 82, no. 2, pp. 804-817, 1999.

[40] AVNET. Avnet express. Accessed on 21 March 2016nlif@].
Available: http://avnetexpress.avnet.com

[34]

[35]

[36]

[37]

(38]

[39]

|

: ) Jan Christiaanse received the M.Sc. degree in
embedded systems from the Delft University of Tedbgy. His research
interests include reconfigurable computing and kradte communication
protocols.

[ ; Martijn van Eijk received the M.Sc. degree in
computer englneenng from Delft University of Teology. His research

2014). He serves as a member ointerests include blockchain-based electronic systand crypto-currencies.

Georgios Smaragdos received the M.Sc. in computer
engineering from the Delft University of Technologyurrently, he is a PhD
student in the Neuroscience Department at the HErasktedical Center,
Rotterdam, The Netherlands. His research interiesiside reconfigurable
computing, fault-tolerant computing, and high-pemfance computational
neuroscience.

!'( @ 6 -'1

(version 1) Christos Strydis received B.Sc. degre
electronics and computer engineering from Technlidaiversity of Crete,



> |EEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEM <

Greece, in 2003, M.Sc degree (honours) in commrtgineering with a minor
in biomedical engineering in 2005, and Ph.D degnemmputer engineering
from the Delft University of Technology, The Netfaerds, in 2011.

Currently, he is an assistant professor with therbgcience Department of |

the Erasmus Medical Center, Rotterdam, The Nethdslaand is also a chief
engineer with Neurasmus BV, The Netherlands. Hehis head of the
computer-engineering lab in the department andsleghé Erasmus Brain
Project effort. Dr. Strydis has acted as techrpicagram-committee member
in various international conferences. He has akser-peviewed, as well as
published manuscripts in well-known internationahferences and journals.

His research interests revolve around the topics higth-performance
computational neuroscience and of next-generatimplantable medical
devices with a focus on implantable neuromodulators

(version 2) Christos Strydis received the Ph.D. réegin computer
engineering from the Delft University of Technolog@urrently, he is an
assistant professor with the Erasmus Medical Cemtex current research
interests span from high-performance computingte-power embedded (in
particular, implantable) systems. Dr. Strydis imember of the IEEE.

h il
electrlcal engineering from Delft University of Tewlogy in 1983. Since
2010 he is senior design engineer at Delft Uniteref Technology. His

research interests include neuromorphic design, raheunetworks,
analog/mixed signal simulation, and low-power desig

Alexander de Graaf received the M.Sc. degree ir.

12

Carlo Galuzzi received the M.Sc. degree (cum
laude) in mathematics from the Department of Mathtéss at the University
of Milan (in Italian: Universita' degli Studi di Néino, 'Statale"), Italy, in 2003,
and Ph.D. degree in computer engineering from Delftiversity of
Technology in 2009. He was post-doctoral researahéne same university
from 2009 till 2016. Since 2016, he is assistargfgmsor at Maastricht
University, Maastricht, The Netherlands.

His research interests include instruction-set itgcture customizations,
reconfigurable and parallel computing, brain mauglhardware/software co-
design, mathematical modeling, graph theory, asibdespace exploration.

Rid ~ Rene van Leuken received the M.Sc. and Ph.D.
degree in electrical engineering from the Delft \émsity of Technology in
1983 and 1988, respectively. At the moment he fsadessor at the Circuit
and Systems group at Faculty of Electrical EngimggrMathematics and
Computer Science of the Delft University of Teclowyl (TU Delft), The
Netherlands.

He has published papers in all major journals, earfces and workshops
proceedings, and has received several best pajpedsiaver the years.

He has been involved in many major research aneldement projects:
ESPRIT, FP6, FP7, JESSI, MEDEA, and recently in ANCATRENE, and
ARTEMIS projects. He is member of the PATMOS stegpicommittee and
the DATE Technical Program Committee.

His research interests include high level digitastem design, system design
optimization, VLSI design, and high performance pate (DSP) engines.
Currently, his major research activity is neuronmiccomputing.



