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Abstract—In this paper, we present the design and imple-
mentation of an Inferior-Olivary Nucleus (ION) network on
an FPGA device. Compared with existing neuron networks,
the proposed design allows to easily customize the network
topology and implement existing as well as ad-hoc topologies,
in order to explore different levels of connectivities between the
cells. Starting from the model of an ION cell, the model has
been optimized and an ION network has been designed and
implemented in multiple steps. By using the Xilinx Vivado Suite,
the design has been synthesized and mapped on a Virtex 7
XC7VXS550T FPGA device. Experimental results show that a
network of 48 ION cells can be simulated in brain real-time
using double floating-point arithmetic, which allows to precisely
simulate the network’s behavior.

I. INTRODUCTION

The human brain is a very complex system, which possesses
billions of nerve cells, also known as neurons. These cells,
which are heavily interconnected, constitute altogether the
so-called Neural Network (NN). Over the years, tremendous
advances in neuroscience gradually led to the creation of
realistic mathematical models of these cells and their com-
plex interconnected networks, which do not simply mimic
biological behavior in an abstract way, but simulate it with a
great level of detail, as in the case of Spiking Neural Networks
(SNNs). SNNs are a particular kind of NN with a high level
of realism in the simulation of the neurons. In this kind of
networks, information is not just encoded by the firing rate of
each neuron in the network, as it happens in classical Artificial
Neural Networks (ANNs), but by the transfer of spikes as well
[1].

Due to the SNNs’ ability to model additional neuron char-
acteristics and adapt them according to spike-train amplitude,
frequency, and precise arrival times, SNNs can have greater
computational and predictive power compared to ANNs [2].
However, this comes at a cost: the high level of realism of
SNNs and their complexity require a considerable amount
of computational resources which, in turn, limit the size
of the achieved simulated networks. The main challenge in
building complex and biologically accurate SNNs lies largely
in the high computational and communication loads of the
network simulations. Furthermore, biological NNs execute
these computations with massive parallelism, something that
conventional CPU-based execution cannot cope very well with.

Field-Programmable Gate Arrays (FPGAs), although slower
than Application-Specific Integrated Circuits (ASICs), thanks
to the high parallelism provided by the hardware, are capable
of providing enough performance for real-time and even hyper-
real-time neuron simulations. Additionally, the reconfiguration

The work presented in this paper is supported by the European Union
and the Dutch government as part of the CATRENE program under the
Heterogeneous INCEPTION project.

property of the FPGAs provides the flexibility to modify brain
models on demand. This flexibility is substantially enhanced
by the use of high-level synthesis tools, which speed up the
development process.

In this paper, we present the Electronic System Level (ESL)
design of a network of extended Hodgkin-Huxley (HH) models
of a particular type of nerve cell (neuron), the Inferior-Olivary
Nucleus (ION), on an FPGA. Starting from the model of
a single ION cell, we designed and implemented an /ON
network using SystemC, which allows to describe and simulate
the behavior of the entire system using functional program-
ming. High-Level Synthesis (HLS) tools, which enable rapid
modification and re-synthesis of the model and automates the
process of optimal hardware architecture selection, have been
used to extract the parallelism of the model, synthesize and
map the proposed design on an FPGA device. The network
can be fine-tuned, as parameter changes can be rapidly carried
out by a reconfiguration of the FPGA.

A highly optimized hardware implementation has already
been proposed in [5] through Vivado HLS (C flow). While it
offers better synthesis results in a head-on comparison with
the current work, it does not allow exploration of different
ION network dimensions and different interconnect architec-
tures, short of re-synthesizing of each different design point.
Additionally, our current SystemC implementation, through
the use of the TLM paradigm, allows for rapid simulation
of different network instances, as well as rapid profiling of
different interconnects (e.g. bus, NoC), with minimal design
overhead. More precisely, the main contributions of the work
presented in this paper are the following:

o the implementation of a brain real-time network of 48
ION cells using double floating-point arithmetic, which
allows to precisely simulate the network’s behavior;

« the possibility to customize the network topology and
implement existing, as well as ad-hoc topologies, in order
to explore different levels of connectivities between the
ION cells;

« the description and optimization of the /ON network,
modeled with SystemC, and mapped on an FPGA to ex-
ploit the inner parallelism of the reconfigurable hardware
and boost the performance of simulation.

In the following sections, the /ON model and the imple-
mentation of an /ON network are presented in more details.

II. MODEL DESCRIPTION

The first version of the JON model was built using Matlab
[3]. To overcome the performance limitations of Matlab, the
ION model was ported to C. The ION C model is our starting
point. In the following, we first present, in more detail, the
model and its optimizations, in order to exploit the parallelism
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Figure 1. Configuration of the proposed ION network [courtesy of S. Isaza,
Erasmus Medical Center (NL)]; D, S, and A represent the three compartments
of the nerve cell (neuron), namely the Dentrite, the Soma, and the Axon.

provided by hardware. After that, we detail the design and
implementation of the JON network on the FPGA.

A. The ION Model

The HH model describes how action potentials are initiated
and propagated in nerve cells (neurons) and it can be adapted
to mimic the behavior of a preferred type of cell [7]. The
model consists of a set of nonlinear differential equations,
which is used to approximate the electrical characteristics of
the cell. It is a continuous time model describing the behavior
of the cells over time, which, at each time step, calculates a
set of parameters for each cell. For the calculation of a single
parameter, one exponential function and several multiplica-
tions and divisions need to be carried out. Moreover, to reach
maximum precision and realistic signal representation, the use
of floating-point arithmetic is essential. These requirements
make the computational complexity of the model very high.
Nonetheless, as all neurons in a SNN function individually, the
behavior of multiple neurons can be evaluated concurrently to
decrease the overall computation time. From [3], we know
that the minimum simulation output interval to achieve a
realistic representation of the /ON behavior is determined at
50us, known as the brain real-time. This means that a single
simulation step takes 505 to produce a brain-real time output.
When the output is generated, the calculated chemical values
are fed back as initial input values, as they define the new
state of the model.

In a NN, each ION is highly interconnected (via gap
Jjunctions) with a number of neighbor cells, which affect its
(electro-chemical) status. As a result, it is very important to
correctly describe the cell distributions in the network. Due to
the “regular” distribution of the cells, it is possible to represent
the IONs in a grid, which, in turn, allows the use Cartesian
coordinates to uniformly describe the neighbor cells. Figure 1
shows a 3 x 3 cell network with interconnections between the
cells. For illustrative purposes only the central cell is drawn
with all connections to the neighbors although, in the model,
all cells are connected to their neighbors. For the same reason,
only a single input and output wires are drawn, which represent
the input and output for every single cell.

B. Code Optimization

The ION model, originally written for a General Purpose
Processor (GPP) architecture with parallel execution in mind,
was not optimized for highly parallel architectures, like the
FPGA. For this reason, before implementing the ION network

in hardware, the model needed to be optimized for the targeted
architecture, so to make optimal use of the parallelism pro-
vided by the hardware. A number of optimizations have been
carried out to improve the model. Among others, the main
optimizations included a reduction of the memory accesses
and mathematical simplifications.

When C code is synthesized for an FPGA, usually, arrays
are implemented in a Block RAM and variables are imple-
mented as registers. As memory usage should be avoided when
it comes to computation performance, memory accesses and,
thus, array accesses, should be minimized by removing the
superfluous ones. As a result, the code has been optimized in
such a way that the intermediate values are stored in registers
and the updated parameters are stored in memory. In this
way, it is possible to read the new initial values directly
from the same memory locations in which they are stored in.
Intermediate values are stored in temporary variables and they
are written back to memory only at the end of the calculation
loop. Both previous and new arrays are stored in registers to
completely avoid memory look-ups. As registers require more
FPGA area compared to RAM but less cycles to read/write,
this optimization can provide a trade off between speed up
and area.

Once the model has been optimized in terms of memory
accesses, a number of mathematical simplifications has been
applied in order to reduce the number of operations carried
out to simulate the behavior of the /ONs. By affecting only
the computational complexity and performance of the model
without compromising its precision, via mathematical manip-
ulations, we were able to effectively reduce the number of
multiplications, the most time consuming operations in the
model. After these and other optimizations (e.g., substitution
of floating-point division-by-constant by multiplication-by-
constant), have been applied to the model, it is possible
to proceed with the design and implementation of the ION
network in hardware, described in the following.

C. Design and Implementation of the ION Network

The structure of the ION network (see Figure 1) led to
the design of several individual (neural) computation units
interconnected with each other. The computation units, which
can be seen as actual cells mimicking the functionality of the
IONs, are implemented as separate units on the FPGA. To
incorporate the gap-junction influence in the ION network,
every cell needs to be able to transfer its data to the neighbor
cells that are affected by it. Due to the finite amount of
resources available on the FPGA, only a limited number of
cells can be implemented in hardware. Similarly, as mentioned
before, the precision has a large impact on the hardware
resources used for the implementation of the model. Although
double floating-point operations take more resources compared
to single floating-point operations, in this work, we used
double precision operations so to implement a realistic and
accurate model of the JON network.

THE PHYSICAL CELLS: The (neural) computation units, from
now on referred to as Physical Cells (PhCs)!, are task spe-
cific machines implemented in hardware with a dedicated

IThe computation units are called Physical Cells to recall that they are
physically implemented in hardware and that the output of their computations
mimic the actual cell behaviors.
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Figure 2. A Physical Cell (PhC) computation module with separate exponent
computation unit.

memory (see Figure 2). In this way, each unit can function
independently from the other ones, which is essential to
guarantee the simultaneous simulation of multiple cells. As
expected, when implemented in hardware, the cells occupy
a certain (fixed) amount of resources, which depends on the
implementation and design choices and, therefore, only a
limited number of cells can be simulated on any available
FPGA. To maximize the use of the hardware in terms of
parallelism and performance, the PhCs are time-multiplexed to
allow the implementation of a much larger JON network. This
is possible as a PhC takes only a fraction of the brain real-
time to simulate an /ON’s behavior. As a result, each PhC can
be reused multiple times within the brain real-time boundary.
The number of times corresponds to the Multiplexing Factor
(MF). This means that, we are capable of simulating a much
bigger network.

INTERCONNECT: In our network model, we assume that each
cell is interconnected with any other cell. However, in reality,
the effects that neighbor cells have on each other are a
function of the distance between the cells. This means that it
is possible to explore different kinds of network connectivities
and to assess their effects on the entire network behavior. As
a result, the network model should be configurable. In our
implementation, each PhC has a private connectivity table
to look up, during the computation, for the effects of its
neighbor cells. This means that the output of each cell should
be distributed among the other cells according to a certain
network topology. Before defining this topology, we need to
analyze the requirements. First of all, the data produced by
each cell should be available, at the same time, to any other
cell in the network. Additionally, the data communications
should have equal priority. As a result, the data is sent in an
all-to-all fashion and, to avoid collisions on the network due
to simultaneous data dispatching, an arbiter for traffic control
has been implemented.

As depicted in Figure 3(a), as a proof of concept, a shared
bus has been used as actual interface between the PhCs. No
extra logic is needed to break down the 64 bit floating-point
variables in single bits for serial dispatching. The shared bus
is practically implemented as a router connected to all PhCs
(see Figure 3(b)), which arbitrates the traffic as it is passing. In
our design, 32 bit addresses are chosen, which are divided in
2 x 16 bit to address up to 2'6 cells. In this way, it is possible
to simulate large array networks.

o
PhC = . 3 PhC PhC - PhC
o —K
7-—-3 o = ARFITERI
Phc g‘ g<—,% Phc PhC ?uowm% PhC
PhC —. " | PhC | Phc PhC
ARBITER =7 e
s T ST

(a) Bus interconnect. (b) Router interconnect.

Figure 3. Implementation of the all-to-all JON network.

To implement the appropriate arbitration scheme, a certain
number of details needs to be taken into account. First of
all, all traffic should be concentrated between the computation
phases to minimize delays in dispatching the data. All the
network nodes (ION cells) should act as both master and slave,
as each node (ION cell) sends data to its neighbors (master)
and receives data from them (slave). Each node individually
transfers its data and the amount of data transferred between
the nodes is considered equal for all nodes. Finally, assuming
that all computations should start simultaneously, they should
also end simultaneously, as each node in the network runs
the same algorithm. Based on these considerations, despite
the effects of /IONs on each others diminish with distance,
which means that different amount of data are produced and
dispatched by each node, we assume that the same amount of
data is produced by each node and dispatched to its neighbors,
with equal priority on the network communication channels.
As a result, a simple round-robin scheme can be implemented
to arbitrate the network traffic.

We implement PhCs in hardware, which are time-
multiplexed as the computation time of each PAC on the FPGA
is only a fraction of the brain real-time. Each PhC executes
the same algorithm. As such, all the PhCs have the data ready
for dispatching at the same time. As a result, due to the all-to-
all communication policy, the network traffic will be, clearly,
very heavy. In order to use the bus in the most efficient way,
the data is sent during the computation phase. In a time-
multiplexed PhC situation, the next /ON computation uses
data independent from the previous computation. Therefore,
each time a PhC ends a computation, it can immediately
start the computation of the subsequent ION cell, as the data
needed for the computation is already available. Only when a
new simulation step needs to start, the PhC needs to receive
data from the neighbor cells. When all data is received, the
computation of the new simulation step can be started. If data
dispatching is delayed, the new computation should wait all
the data before starting.

III. EXPERIMENTAL RESULTS

The hardware implementation of the proposed network is
accomplished in multiple steps. First of all, the optimized /ON
C model (see Section II.LB) of a single cell is implemented
using SystemC in order to obtain the hardware resource usage
of a single cell. This allows to determine the maximum size
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of the ION network implementable in hardware, taking into
consideration that PhCs are time-multiplexed (see Section
IL.B).

Based on this information, a SystemC TLM model is im-
plemented to simulate a hardware implementation of the ION
network. The SystemC TLM model allows to simulate different
kinds of network topologies in a fast way, thanks to the high
abstraction level and, at the same time, it allows to test the
feasibility of ad-hoc network topologies as well as different
level of connectivities between the cells. As mentioned in
Section II.C, as a proof of concept, in this work, we use a
shared bus as the actual interface between the PhCs. However,
different network topologies can be easily implemented and
the overall effect on the JON network evaluated. Finally, in
order to implement the JON network model in hardware, the
SystemC TLM model needs to be converted in a SystemC
model. Based on the SystemC model, by using Vivado HLS, the
network has been synthesized into an RTL description mapped
on an FPGA device. After that, the FPGA implementation has
been done using Vivado IDE. In the following, we evaluate
the ION network behavior based on the proposed design and
implementation choices.

The ION network has been synthesized and mapped on
a reconfigurable architecture, in order to see the benefits of
our design methodology. In our experiments, we targeted a
Virtex 7 XC7VX550 FPGA board with a clock frequency of
100Mhz [4]. As mentioned before, Vivado HLS and Vivado
IDE (Vivado Suite 2013.4) [6] have been used for the synthesis
and implementation of the design.

In order to identify the highest number of /ON cells to map
on the given FPGA, various combination of PhCs and MFs
have been taken into consideration. Figure 4 shows different
configurations in order to simulate a particular number of cells.
The corresponding number of PhCs per number of simulated
cells is given and the optimal execution time is the lowest bar
in each cluster. Starting from 16 simulated cells, the optimal
number of PhCs is 8. The magnification of the part between
32 and 64 simulated cells shows the lowest-execution-time

Table 1
RESOURCE USAGE OF THE [ON NETWORK MODEL IMPLEMENTATION
WITH 8 PHCS AND A TIME-MULTIPLEXING FACTOR OF 6 ON A Virtex 7
XC7VX550 FPGA WITH A CLOCK FREQUENCY OF 100MHZ.

DSP 48
48%

BUFG
6%

FF LUT | MEM. LUT
28% | 74% 1%

1/0
12%

BRAM
2%

configurations for the possible numbers of simulated cells.
This is done to determine the maximum number of cells
which can still be computed within the brain real-time deadline
(the horizontal red line in Figure 4). The largest number of
simulated cells that meets the brain real-time requirement is
48 simulated cells with 45560ns in a configuration of 8 PhCs,
each one time-multiplexed 6 times. As shown in the figure, the
7 x 7 configuration just crosses the boundary with 50280mns.
The resource usage of the proposed design, according to
Vivado HLS, is presented in Table I. The estimated resource
usage of the sythesized model is very predictable. When the
number of PhCs is increased, the resources grow at the same
rate. When increasing the MF, the number of FFs increases,
as expected, for extra variable storage in the registers, and the
number of LUTs increases, in order to implement the needed
extra muxing logic.

IV. CONCLUSIONS

In this paper, we presented the design of an /ON network
and its implementation on an a reconfigurable architecture.
Starting from the C model of an ION cell, the model has been
optimized and an JON network has been designed and imple-
mented on an FPGA device using SystemC, which allowed to
describe and simulate the behavior of the entire system using
functional programming. Via our design and optimizations,
we were able to implement a realistic (brain real-time) ION
network of 48 ION cells. By exploiting the parallelism and
performance of computation of the FPGA device, the cells has
been implemented as 8 PhCs, time-multiplexed 6 times, for a
total of 48 ION cells implemented on the FPGA. Additionally,
the proposed design allows the implementation of any network
topology and/or connectivity strategy, which is essential in
order to test their effects on the behavior of the entire network.
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