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ABSTRACT
The cardiac interpulse interval (IPI) has recently been pro-
posed to facilitate key exchange for implantable medical de-
vices (IMDs) using a patient’s own heartbeats as a source
of trust. While this form of key exchange holds promise for
IMD security, its feasibility is not fully understood due to
the simplified approaches found in related works. For exam-
ple, previously proposed protocols have been designed with-
out considering the limited randomness available per IPI, or
have overlooked aspects pertinent to a realistic system, such
as imperfect heartbeat detection or the energy overheads im-
posed on an IMD. In this paper, we propose a new IPI-based
key-exchange protocol and evaluate its use during medical
emergencies. Our protocol employs fuzzy commitment to
tolerate the expected disparity between IPIs obtained by an
external reader and an IMD, as well as a novel way of tack-
ling heartbeat misdetection through IPI classification. Using
our protocol, the expected time for securely exchanging an
80-bit key with high probability (1 − 10−6) is roughly one
minute, while consuming only 88 µJ from an IMD.

CCS Concepts
•Security and privacy → Key management; Biomet-
rics; Access control; Mobile and wireless security;

1. INTRODUCTION
Modern implantable medical devices (IMDs) are light-

weight embedded devices equipped with wireless capabilities
to support non-invasive treatment updates and maintain-
ability [20]. Given the need for protecting medical data and
the life-critical function of an IMD (I), they face stringent
security requirements and require an external reader (R) to
connect to it securely. At the same time, I should always be
accessible during emergencies, as patient safety severely out-
weighs IMD security [8]. For example, an emergency medical
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technician may need to obtain recent IMD data logs to ex-
pedite patient diagnosis. In most cases, however, I and R
are unknown to each other, i.e., they do not share a secret
key which is required for secure communication.

To be able to communicate, I and R need to exchange a
secret key KRI in a trusted manner. One promising way to
facilitate this exchange uses the cardiac interpulse interval
(IPI), that is, the time difference between two consecutive
heartbeats [14, 15, 17, 23]. Each IPI contains a number of
random bits, which may only be obtained (with some consis-
tency) by R and I if they simultaneously measure a cardiac
signal from the same person. These characteristics essen-
tially make IPIs time- and person-specific random numbers,
which allows it to be used for entity authentication [15, 17]
or, as is targeted in this work, key exchange [1,4,12]. In the
latter case, I (generates and) commits KRI using its own
IPIs; R may subsequently decommit KRI using R’s IPIs.

While various key-exchange protocols using IPIs have been
proposed [1,4,12], they have several shortcomings that limit
their applicability in real systems. For example, some of
these studies either do not take the (limited) randomness
available per IPI into account, have overlooked IPI-related
practicalities (e.g., imperfect heartbeat detection) or do not
consider the requirements of IMDs, such as minimal energy
consumption. In this paper, we propose and evaluate a new
security protocol which uses IPIs for key exchange through
using the fuzzy-commitment security primitive [10]. Our
protocol distinguishes itself from related work through a
novel way of overcoming heartbeat misdetection, based on
heartbeat classification and ignoring any IPIs which have
been affected by misdetection. We demonstrate that our
protocol is suitable for IMDs by evaluating both how fast
and reliably a key can be exchanged, as well as its compu-
tational and communication overheads.

The remainder of this paper is structured as follows: First,
we detail the fuzzy-commitment scheme in Section 2. In
Section 3 we review studies related to the randomness and
reliable measurement of IPIs as well as other key-exchange
protocols based on IPIs. Our protocol is detailed in Section 4
and is subsequently evaluated in Section 5. Finally, our
obtained results are put into perspective in our discussion
in Section 6, after which concluding remarks are provided in
Section 7.

2. BACKGROUND
During trust establishment (detailed in Section 4.2), ex-

ternal reader R and IMD I use IPIs to derive witnesses wR

and wI , respectively, where wR ≈ wI . These witnesses are
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Figure 1: Key exchange using fuzzy commitment and heart-
beats.

freshly generated, random numbers: As such, a secret (in
our case, symmetric key) KRI can be encrypted using wI in
a similar fashion to a one-time pad (OTP) [23], i.e., using a
simple xor operation (KRI⊕wI). If wR = wI , R may subse-
quently decrypt KRI using wR (as KRI ⊕wI ⊕wR = KRI).

Unfortunately, it is common in IPIs (and biometrics, in
general) that wR ≈ wI , i.e., wR 6= wI , which prohibits R
from successfully decrypting KRI using OTPs. The fuzzy
commitment scheme (illustrated in Figure 1) overcomes this
limitation by applying error-correcting codes (ECC) to KRI

prior to encryption [10]. That is, I commits KRI as
{{KRI}}wI = ECC(KRI) ⊕ wI , where {{x}} is the com-
mitment of x. As part of fuzzy commitment, I also cal-
culates the hash of KRI , h(KRI), and sends this data to R
(I → R :< {{KRI}}wI , h(KRI) >). R may subsequently ob-
tain K′RI through the inverse process of commitment, where
K′RI = KRI iff wR ≈ wI . To validate the correct exchange
of KRI , R calculates its own hash h(K′RI) and compares it
to h(KRI), which match iff K′RI = KRI .

3. RELATED WORK
The feasibility of key exchange using IPIs depends both on

the randomness of IPIs (as only random bits can be used for
fuzzy commitment) and the disparity between IPIs obtained
by different entities (inter-witness disparity). In this Section,
we therefore first discuss a number of studies which evaluate
these IPI characteristics, after which we consider other IPI-
based key exchange protocols.

The randomness of each IPI has been evaluated in several
studies, considering both healthy subjects during rest and
patients with cardiovascular diseases such as hypertension
and arrhythmias [15, 17–19, 22]. In all these studies, it is
concluded that the four least-significant bits (LSBs) of each
IPI may be considered to be independently distributed ran-
dom variables. In this work, we therefore consider the four
LSBs of each IPI usable for fuzzy commitment. It should be
noted that cases exist where the entropy per IPI is severely
limited (e.g., subjects during exercise [18]) or that no heart-
beats may be obtained from a patient at all (e.g., cardiac
arrest). We discuss the application of our key-exchange pro-
tocol for these cases in Section 6.

The inter-witness disparity is determined both by the inter-
sensor variability1 (V ARIS) and the probability pdet of each
entity (I or R) detecting each heartbeat correctly2. V ARIS

is affected by howR and I obtain their IPIs: As such, various

1Assuming precise and non-drifting sensors, V ARIS is the
variance between two different sensor measurements of car-
diac biosignals, caused by the variable pulse-transition time
of ventricular contraction (heartbeats) to the rest of the
body due to, for example, motion and pressure differences.
2Incorrect heartbeat detection (the detection of a non-
existing heartbeat or not-detecting an actual heartbeat) re-
sults from, among others, sensor-movement artifacts or im-
perfections in the detection algorithm.

models for V ARIS have been proposed, including the differ-
ence in measurements between two ECG leads [5,15,23], an
ECG lead and PPG (Photoplethysmography) [2,14] and an
ECG lead and BP (blood pressure) [17–19]. In this work,
we evaluate our key-exchange protocol using two of these
models which we consider representative for typical IMD-
emergency scenarios.

While most studies related to IPI-based security have been
evaluated with V ARIS in mind, most do not consider heart-
beat misdetection. However, a recent, preliminary study has
shown that it may have a significant effect on inter-witness
disparity [17]. In this paper, we demonstrate that fuzzy com-
mitment (on its own) cannot tolerate the disparity resulting
from heartbeat misdetection. We subsequently tackle this
problem by ignoring IPI blocks which have been affected by
misdetection during witness generation.

IPI-based key exchange has previously been proposed for
device pairing in body-area networks [1, 4, 12]. More re-
cently, an IPI-based data exchange protocol has been pro-
posed to facilitate reader-IMD communication during emer-
gencies [23]. All of these protocols rely on either the fuzzy
commitment [10] or the (closely related) fuzzy vault [9] se-
curity primitive to provide secure key exchange. These ex-
isting studies, however, have either not taken the limited
randomness available per IPI into account [4, 12], or have
overlooked one or more practicalities, such as heartbeat mis-
detection [1,4,23] or the (energy) requirements of IMDs [12].
As a result, we consider these protocols too simplistic for
practical use. In this work, we present a new IPI-based
key-exchange protocol for IMDs which, similar to existing
protocols, achieves secure key exchange through the fuzzy
commitment security primitive. Ours, however, overcomes
its primary limitation (heartbeat misdetection) by exclud-
ing IPIs which have been affected by misdetection prior to
commitment. Furthermore, our protocol considers both the
limited randomness available per IPI and is tailored to the
constraints and requirements of IMDs during emergencies.

4. KEY EXCHANGE USING HEARTBEATS
In typical IMD security, IMD I employs a symmetric (pri-

vate key) cipher to facilitate lightweight, secured communi-
cation [20]. An external reader R can therefore only commu-
nicate to I if a key KRI is shared between the two. During
emergencies, however, R and I are likely unknown to each
other and therefore do not share a secret key. Our goal is,
then, to transfer KRI from I to R in a secure and trustwor-
thy manner, which subsequently allows R to communicate
to I using its regular security protocol. To do so, R and I
first need a way to establish trust between them, after which
key exchange ensues under concealment of this trust.

In the following Sections, we first introduce our adversar-
ial model, after which we detail how IPIs are used to gener-
ate trust between R and I by generating witnesses wR and
wI , respectively. We subsequently present our key-exchange
protocol in Section 4.3, which exchanges KRI using fuzzy
commitment and witnesses wR and wI .

4.1 Adversarial model
The goal of an adversary A is to obtain either KRI , wR

or wI such that he can either gain access to I or obtain pri-
vate information from the (secure) communication between
R and I. Our protocol is designed for an active adversary
who has full control of the channel and may eavesdrop, mod-
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Figure 2: Witness generation.

ify, drop and replay messages sent from R to I and vice
versa, in addition to forging his own messages. While this is
a rather strong assumption (it is unlikely that A is present
during an actual emergency), we consider IMD security im-
portant enough to assume such a worst-case model. De-
spite his capabilities, A is not able to measure the IPI bits
which are used for witness generation: This assumption is
supported by related work which has shown that remote-
measuring techniques are not able to provide a statistical
advantage over mere guessing [15].

4.2 Trust establishment
We aim to establish trust between R and I through us-

ing IPIs, a cardiovascular biometric which is defined as the
time difference between two consecutive heartbeats. Most
studies conclude that the 4 least-significant bits of each IPI
can be considered random [15, 17–19, 22]. Despite this ran-
domness, R and I may both obtain the same IPI bits (with
some consistency – minor disparities are common in bio-
metrics) iff they simultaneously measure the same heart-
beats on the same body. These characteristics allow R and
I to use IPIs for generating random witnesses wR and wI

(where wR ≈ wI), providing a basis for trust establishment.
The most common way of generating these witnesses (used
in [2, 14, 17–19]) is depicted in Figure 2: First, a number
of heartbeats are detected from a cardiac biosignal and the
time interval between consecutive heartbeats is calculated
to form IPIs, i.e., IPI(i,i+1) = beati+1− beati. A predefined
set of (random) bits is selected from each IPI: The most
significant bits (MSBs) are typically discarded due to their
inherent low entropy, while the least significant bits (LSBs)
may be discarded due to inter-sensor variability (V ARIS

1).
Gray coding is applied to the selected IPI bits in order to
strengthen them against V ARIS (reducing the number of
bits affected by a small disparity between IPIs). Finally, the
Gray-coded bits from consecutive IPIs are concatenated to
form a witness.

The trust formed between R and I hinges on the assump-
tion that wR ≈ wI iff R is physically proximal to I (i.e.,
capable of touching the patient), which is a common as-
sumption for emergency-trust establishment [16]. Logically,
an adversary A could try to gain access to the IMD by gen-
erating a witness wA ≈ wI using the same method as R.
However, we expect that the risk of abusing this mechanism
is minimal, as: 1) It is unlikely that a patient would not
notice (or allow) A attaching a heartbeat sensor to him/her;
2) Sensors have to be fastened steadily to the patient for
successful trust establishment, as there would otherwise be
a significant disparity between the generated witnesses (see
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Figure 3: Illustration of inter-witness disparity, showing the
IPIs obtained by R and I (in decimals) and annotations
highlighting the disparity. In this example, R does not de-
tect heartbeat 4.

Section 5.2); and 3) In the unlikely event that A can satisfy
both (1) and (2), it is reasonable to expect that A would
have easier methods of harming the patient (e.g., physically
attack the patient or use social engineering to obtain his
password). That is, IMD security may not be deemed as
the most crucial for the patient’s well-being in such cases.

The performance and overheads of our key-exchange pro-
tocol and the size of wR and wI depends largely on the ex-
pected inter-witness disparity, as a larger disparity requires
stronger error-correcting codes for fuzzy commitment. To
understand some of our design choices, we first exemplify the
two causes of inter-witness disparity using Figure 3, which
depicts the IPIs generated by R and I. Also highlighted
in Figure 3 are the following: 1) V ARIS : When R and I
obtain an IPI from the same heartbeats, a minor disparity
between these IPIs occurs as R and I detect each heartbeat
with slight variations due to inter-sensor variability V ARIS ;
and 2) Heartbeat misdetection: It can happen that R or I
fails to detect a heartbeat (or detects a fake heartbeat) due
to, for example, movement artifacts or imperfections in the
detection algorithm. In the example of Figure 3, R has failed
to detect heartbeat 4, resulting in the following effects: i)
R incorrectly bases IPI(3,4) on heartbeats 3-5, resulting in
a value considerably different than its other IPIs and I’s
IPI(3,4); and ii) The remaining IPIs used for witnesses gen-
eration are misaligned as R has generated one less IPI using
heartbeats 3-5 than I. That is, heartbeat misdetection in-
troduces order variance between wR and wI .

Fuzzy commitment can tolerate the random bit permu-
tations stemming from V ARIS effectively using error cor-
recting codes, such as BCH codes [10]. A known limitation
of the scheme, however, is that it is not capable of deal-
ing with order variance which, in our case, is introduced by
heartbeat misdetection3. As such, we have to ensure that R
and I use the same IPIs for witness generation. To do so, we
opt for having R and I first determine if a misdetection has
occurred in a block of IPIs during witness generation and, if
so, both entities replace the entire block for freshly obtained
IPIs. While this process is further explained in Section 4.3,
we first introduce here a proof-of-concept classification algo-
rithm used by R and I to identify misdetections.

Our classification algorithm in Listing 1 essentially em-
ploys a double-thresholding mechanism to distinguish cor-
rect and misdetected IPIs by considering the substantially
higher (or lower) IPI values resulting from it. The algorithm
first calculates the mean of a block of IPIs and subsequently

3We could opt to use an order-invariant derivative of fuzzy
commitment (called fuzzy vault [9]). However, we argue (in
Section 6) that this scheme would be too resource-heavy for
IMD application.



Listing 1: Heartbeat-classification algorithm (pseudo code).

Input: IPIb #block of IPIs
Th_l , Th_u # classification thresholds

Output: m # misdetection flag

m = 0;
IPIm = mean(IPIb);
for i = 0: len(IPIb):

if IPIb[i] < IPIm * Th_l or IPIb[i] > IPIm * Th_u:
m = 1;
return;
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Figure 4: Key exchange protocol.

compares each IPI to this mean value and two thresholds,
lower threshold Thl (Thl < 1) and upper threshold Thu

(Thu > 1), to distinguish between detecting a fake and
missing a real heartbeat, respectively. If a block of IPIs con-
tains a misdetection for either R or I, they respectively set
their misdetection flag (mR or mI , resp.) to 1. We expect
that the simplicity of our algorithm favors the tight energy
budget of IMDs. It should be noted that our algorithm –
as with any classification algorithm – may result in both a
number of false positives (i.e., a regular heartbeat is consid-
ered misdetected) and false negatives (i.e., a misdetection is
not identified). These classification rates are a function of
the IPI-block size, Thl and Thu and are further considered
in our evaluation in Section 5.2.

4.3 Key-exchange protocol
Based on our adversarial model in Section 4.1, we next

detail our security protocol in a generic fashion, after which
we discuss specific implementation details.

4.3.1 Protocol design
Our key-exchange protocol is depicted in Figure 4 and

comprises the following four steps:

S1. Initialization: R and I initiate the key-exchange ses-
sion. R first sends its identifier to start the session
with I (R → I : IDR) after which I replies with its
own identifier (I → R : IDI). These identifiers are
used for binding the key KRI to identifiers IDI and
IDR upon successful exchange, allowing R and I to
communicate using Is regular security protocol.

S2. Witness generation: R and I generate witnesses wR

and wI from their respective heartbeat measurements

following the methodology described in Section 4.2. To
generate these witnesses, R and I simultaneously ob-
tain a block of IPIs and classify if a misdetection has
occurred: If so, they set their respective misdetection
flags (mR and mI) to 1. These flags are subsequently
exchanged (R → I : mR and I → R : mI) and, if a
misdetection has occurred (mR∨mI = 1), both entities
replace the block with fresh IPIs. R and I resynchro-
nize after each block (using mR and mI) to prevent a
misdetection from affecting multiple blocks [17]. This
process is repeated until enough IPIs are obtained to
generate wR and wI .

While wR and wI are transmitted in plain text, this
does not provide an adversary A with an advantage.
First, overhearing mI or mR does not provide any use-
ful information, except that a certain block of IPIs is
not used. As this block is replaced with fresh and ran-
dom IPI bits, the secrecy of the fuzzy commitment is
not threatened. Secondly, if A were to modify, drop,
replay, delay or insert its own mR and/or mI , the net
effect would be that R and I either do not agree on
which IPIs to use (i.e., introduce order variance be-
tween wR and wI) or continuously drop all IPIs. The
security of our protocol hinges on the randomness of
wI , which is not affected by using different IPIs from
I and/or R [17]. As such, malicious mR or mI do
not provide A with any insights into wR, wI or KRI

(exchanged in the following protocol step).

S3. Fuzzy commitment : I generates a random secret key
KRI and commits it using wI and fuzzy commitment.
As both KRI and wI are fresh and random, fuzzy com-
mitment facilitates perfect secrecy [23]. This commit-
ment is sent to R (I → R :< {{KRI}}wI , h(KRI) >).
R subsequently decommits K′RI using wI and the in-
verse process of commitment. As in the original fuzzy
commitment scheme, we employ BCH codes as they
provide strong error-correcting capabilities to random
the bit flips resulting from V ARIS [10].

S4. Key validation: To validate the correct decommitment
of KRI , R computes its own hash h(K′RI) and com-
pares it to the hash received from I in its fuzzy com-

mitment (h(KRI)
?
= h(K′RI)). If these hashes match,

R encrypts IDI using KRI and its regular cipher and
sends this to I (R → I :< EKRI (IDI) >). The
security of this step assumes that A cannot obtain
KRI from this encryption even if IDI is known, which
is the case for modern ciphers. I subsequently de-
crypts IDI using its cipher and KRI and, if the de-
crypted DKRI (IDI) = IDI , key exchange is a suc-
cess. Alternatively, if either h(KRI) 6= h(K′RI) or
DKRI (IDI) 6= IDI , the key exchange has failed. This
step guarantees mutual trust, as both R and I (implic-
itly) validate if wR ≈ wI .

4.3.2 Implementation aspects
In line with a recently proposed security protocol for IMDs,

IDR and IDI are chosen to be 96 bits long [20]. As KRI is
used in subsequent communication between R and I using
I’s regular protocol, it has to adhere to the key-length re-
quirements of I’s regular cipher. We consider the PRESENT-
80 cipher well-suited for IMD cryptography, given its mini-
mal energy footprint [3] and, as such, KRI is chosen to be 80



bits long. Moreover, as PRESENT-80 has a block size of 64
bits, the encryption EKRI (IDI) uses the 64 least-significant
bits of IDI . The expected disparity between the IPIs ob-
tained by R and I determines the length of the witnesses
BCH codes in fuzzy commitment. While the particular de-
sign choices for obtaining these parameters is left for our
evaluation in Section 5.2, we briefly state that our proto-
col uses 3 bits per IPI to generate 204-bit long witnesses
and (204, 80, 37) BCH codes (a shortened version of the
(255, 131, 37) BCH code). That is, the 80-bit long KRI is
encoded using 204 bits, which creates a Hamming-distance
of 37 bits between code words. Finally, for hashing KRI

we rely on SHA-3, a recommended, collusion-resistant hash
function [13], which emits a 224-bit long hash. This hash
sufficiently protects the secrecy of KRI , given its size and
randomness.

5. EVALUATION
In this Section we evaluate how fast and reliably our pro-

tocol may exchange a key from I to R, as well as its com-
putational and communication overheads. We start in Sec-
tion 5.1 by introducing our evaluation methodology, figures
of merit and input datasets and proceed in Section 5.2 with
reporting our results.

5.1 Experimental setup
Our protocol is quantified in terms of the probability of

successful exchange pex (i.e., the probability that K′RI =
KRI), the key-exchange time Tex and I’s computational and
communication overheads. During emergency situations, it
is crucial that the key exchange between I and R is success-
ful, given the (life-) critical situation of a patient. In line
with related works [15, 17, 19], we therefore target a high
key-exchange rate with pex = 1 − 10−6 and where we try
to obtain Tex < 60 seconds (commonly reported values for
Tex vary between 30-60 seconds). pex and Tex are depen-
dent on the fuzzy-commitment size (nc): An increased com-
mitment size allows for the use of stronger error-correcting
codes (increasing pex) while also requiring more heartbeats
to form wR and wI (increasing Tex). In turn, nc depends
on inter-witness disparity due to V ARIS , the rate at which
heartbeats are detected correctly (pdet) and how well mis-
detections are classified correctly.

We evaluate pex and Tex using two models of V ARIS :
ECG-ECG [15] and ECG-BP [17]. In both models, I is
modeled as an ECG recording, which we consider realistic
for I as IMDs are typically implanted close to the heart and,
therefore, likely have access to some form of accurate heart-
beat measurements (using ECG). The IPIs of I are obtained
from the MIT-BIH arrhythmia dataset, which contains 30-
minute ambulatory ECG recordings of 48 subjects (average
heart rate: 68 beats per minute (BPM)). From this dataset,
we have selected recordings where subjects do not experience
severe episodes of arrhythmia (these cases are discussed in
Section 6). R is subsequently modeled by adding V ARIS

to these recordings: In ECG-ECG [15], R is modeled as an
ECG recording (different from I), whereas it is modeled as
a blood-pressure (BP) recording in ECG-BP [17]. We con-
sider these models representative for R as both ECG and BP
are commonly recorded during medical emergencies. Table 1
presents the average bit-error rates of these models: Notice
that the less significant bits tend to suffer more from V ARIS

compared to the more significant bits, and that the ECG-

Table 1: Average bit-error rate dataset due to V ARIS .

Bit # 0 1 2 3

ECG-ECG [15] 0.08 0.04 0.02 0.01
ECG-BP [17] 0.46 0.29 0.15 0.08

BP model is considerably noisier than the ECG-ECG one.
To find the best settings for pex and Tex we, therefore, vary
which of the IPI bits are selected for witness generation.

The probability of correctly detecting a heartbeat pdet is
modeled using a random process with a uniform distribu-
tion, where heartbeats are randomly deleted (or inserted)
for either of the two entities with probability 1− pdet. This
generic model allows us to investigate the performance of our
protocol without relying on a specific heartbeat-detection al-
gorithm. As several detection algorithms report a detection
rate of over 99% [6,11], we vary pdet from 1.00 down to 0.99.

The performance of our misdetection-classification algo-
rithm is expected to vary based on its parameters, i.e., the
number of input IPIs considered per block and thresholds
Thl and Thu. We, therefore, vary these parameters and
quantify the algorithm’s performance in terms of sensitiv-
ity (the accuracy of correctly classifying misdetections) and
specificity (the accuracy of correctly classifying heartbeats).
Moreover, we consider the key-exchange time overhead due
to ignoring misdetected IPI blocks for witness generation.

While our key-agreement protocol adds an extra security
feature to an implant, it requires additional resources for
execution. These resources are estimated by profiling the
protocol on the Smart Implantable Security Core (SISC),
a 5-stage low-power ASIP for IMDs with ISA extensions
for security applications [20]. We are mainly interested in
the memory footprint and energy consumption per session
(Eses), given that IMDs are effectively energy-constrained
embedded systems. For the memory footprint, we consider
both the static memory required for storing the different
algorithms executed in the protocol, as well as the dynamic
memory required for executing these algorithms.
Eses is a function of both the computations performed

by I (such as BCH encoding and hashing) as well as the
transmission of data from I to R. To estimate the compu-
tational energy consumption (Ecmp), we have synthesized
the SISC processor for a UMC 90nm CMOS technology in
Synopsys Design Compiler using Faraday SP libraries (due
to availability). We also execute the protocol on SISC in
RTL simulation to extract the processor’s switching activity.
An accurate estimation of Ecmp is subsequently obtained by
evaluating the switching activity for the synthesized core
in Synopsys PrimeTime. Unfortunately, we cannot directly
measure the energy spent on communication (Ecom) as we
lack a functional prototype of an IMD. However, to provide
a first-order assessment of this overhead, we estimate Ecom

by assuming that transmitting one bit over the air costs 40
nJ of energy, as reported in related work [21]. Finally, our
evaluation assumes that I has access to heartbeats at no
additional (energy) costs, which is the case for the majority
of IMDs.

5.2 Experimental Results
Our evaluation is organized as follows: First, we consider

the effect of V ARIS on pex and Tex, ignoring peak misde-
tection (i.e., we set pdet = 1.00). We subsequently vary pdet
from 1.00 to 0.99 and demonstrate its detrimental effects
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Figure 5: pex as a function of nc for ECG-ECG noise and
various IPI-bit selections.

on pex using fuzzy commitment on its own, after which we
describe the results when employing our classification algo-
rithm. Finally, we discuss the computational and communi-
cation overheads of the IMD.

First, to understand the effect of V ARIS on pex and Tex,
we vary which bit(s) are selected per IPI and the length of
error-correcting codes nc for both our V ARIS noise models.
Let us first consider the results for the ECG-ECG model,
depicted in Figure 5. Starting with the IPI-bit selection
which includes only the noisiest bit (bit 0), we see that pex
increases slowly as a function of nc up to a maximum pex =
69.4% for nc = 1000. It is clear that the high bit-error rate
of this least-significant bit prevents us from obtaining our
targeted pex ≥ 1 − 10−6, even with strong error-correcting
codes. Moreover, note that nc = 1000 implies that 1000
heartbeats would be used for fuzzy commitment (as only
one bit is used per IPI). Given the average heart rate of 68
BPM, this would also result in an infeasible key-exchange
time of Tex = 1000

68
≈ 15 minutes.

To increase pex, we try to use a more significant IPI bit as
these are less prone to V ARIS . As depicted in Figure 5 (bit
1, 2, 3), we indeed find that these bits result in more favor-
able values for pex for a given nc. While pex quickly reaches
values for pex > 90% (nc = 140), a high nc ≥ 980 (using bit
3 only) is still required to obtain our target pex, resulting
in an infeasible key-exchange time. Finally, we observe the
strongest increase in pex when the IPI-bit selection includes
multiple bits (bit 2-3, bit 1-3), which may be attributed to
Gray coding as it minimizes the average bit-error rate. The
best selection includes 3 bits per IPI (bits 1-3), which allows
for pex ≥ 1−10−6 for nc = 204 and, given the average heart
rate of 68 BPM, results in a Tex = 204

3·68 = 1 minute. As the
ECG-BP model is considerably noisier than ECG-ECG (see
Table 1) it comes as no surprise that key exchange with a
high probability of success is not possible using this model,
i.e., reliable key exchange is only possible if R obtains its
measurements from ECG.

Let us now briefly consider the effect of peak misdetec-
tion on pex using fuzzy commitment without support of our
classification algorithm. Figure 6 depicts pex for various
heartbeat-detection rates pdet using our previously found
best IPI-bit selection (bits 1-3). It is clear that heartbeat
misdetection is detrimental to pex, i.e., decreasing pdet re-
sults in a lower pex for a given nc. Moreover, we observe
that for a given pdet, increasing nc does not result in an im-
provement in pex, i.e., the length of the used error-correcting
codes does no longer influence the probability of successful
key exchange. As explained in Section 4.2, this is due to the
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Figure 6: pex as a function of nc for various pdet.
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Figure 7: Sensitivity and specificity as a function of Thl and
Thu using 4 IPIs per block and pdet = 0.99.

order variance introduced by misdetection which cannot be
tolerated using fuzzy commitment.

The results in Figure 6 clearly show that wR and wI

should be generated without the influence of misdetection.
The first step for doing so is classifying whether a block of
IPIs contains any misdetections: Figure 7 depicts the sensi-
tivity and specificity of our algorithm as a function of detec-
tion thresholds Thl and Thu, for a pdet = 0.99 and blocks of
4 IPIs (other pdet and block sizes are discussed later). First,
when Thl and Thu are close to 1 (Thl = 0.9, Thu = 1.1), an
IPI has to differ from the IPI-mean only slightly to be classi-
fied as a misdetection. As a result, we find a high sensitivity
(of 100%), i.e., all misdetections are correctly classified as
such, while resulting in a specificity of 95.1%. By decreas-
ing Thl or increasing Thu, the difference between an IPI
and the mean value has to be larger to be classified as a
misdetection, leading to decreased sensitivity and increased
specificity. Given the substantial impact misdetection has on
pex, we aim to ensure that all misdetections are classified as
such, i.e., sensitivity=100%. Under this constraint, we find
a best-case specificity of 99.6% for Thl = 0.7, Thu = 1.3.
These thresholds also hold for different pdet and block sizes.

Any IPI block which is classified as containing a misde-
tection is ignored for witness generation, resulting in an
overhead to the key-exchange time Tex. While this over-
head (Tmi

ex ) varies between key-exchange attempts (depend-
ing on the actual misdetections made), we next discuss the
expected Tmi

ex for most (99.0% of all) cases. Figure 8 depicts
Tmi
ex for various pdet and block sizes. As may be expected,
Tmi
ex is increased when more misdetections are made (de-

crease in pdet) as more IPI blocks are (correctly) identified
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to contain a misdetection. Furthermore, a higher block size
has a higher probability of being ignored for witness gener-
ation as there is a higher probability of misdetection within
the block. This has a substantial impact on Tmi

ex of up to
225.8 seconds, as Figure 8 reveals. For small block sizes (2
or 4 IPIs), Tmi

ex varies between 3.5 and 17.6 seconds depend-
ing on pdet. That is, Tex varies between 60 and 77.6 seconds
in 99.0% of all cases.

Let us now consider the computational and communica-
tion overheads when executing the protocol (IMD-side) on
the SISC processor. Figure 9 depicts the memory footprint
and energy consumption for the different protocol steps (S1-
S4) executed by I. Here, we again assume that 3 bits are
selected per IPI to form 204-bit witnesses, blocks of 4 IPIs
and pdet = 0.99%. We first discuss these results for each
step individually and conclude with the overheads for the
protocol as a whole.

During the initiation step (S1), I responds to the incom-
ing request of R by replying with IDI (96 bits) and, ac-
cordingly, spends only a trivial amount of energy on com-
munication. In the second step, I performs witness gen-
eration by classifying and eliminating misdetections for all
IPI blocks, followed by concatenating these bits to form wI .
These steps require a minimal amount of computation and
communication and Eses is, resultingly, comparable to that
of S1. Despite the low complexity of this step, we find a
relatively high instruction-memory size comparable to the
PRESENT-80 algorithm used in S4. This memory overhead
is largely due to the multiplications used in the classifica-
tion algorithm: As a minimalistic processor, SISC does not
have a dedicated multiplier and relies on soft multiplication
(emulation) instead, resulting in a large instruction binary.

In S3, I performs fuzzy commitment, comprising the com-
mitment of KRI , the hashing of KRI using SHA-3 and the
transmission of this commitment. While not depicted in
such detail in Figure 9, we find that commitment is sub-
stantially less complex than hashing, which is responsible
for roughly 75% of the memory and Ecmp overheads in this
step. Moreover, given the substantial amount of data sent to
R (428 bits), a significant part of the energy in S3 is spent on
both computation and communication. Finally, the valida-
tion of successful key exchange (S4) employs the PRESENT-
80 cipher for decrypting IDR, which exhibits similar com-
putational overheads as SHA-3.

The memory required for storing and executing the en-
tire protocol is 6.7 kB and 1.4 kB, respectively. Note, how-
ever, that I is expected to employ hashing and encryption in
it’s regular security protocol regardless of key exchange, i.e.,
these algorithms are already stored on I. We can, therefore,
exclude these algorithms from our instruction-memory over-
head, resulting in a net overhead of only 2.9 kB. Finally, the
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Figure 9: Memory footprint (b) and energy consumption (c)
for I during the different protocol steps, using 3 bits per IPI,
204-bit long witnesses, 4 IPIs per block and pdet = 0.99.

total energy spent on computation and communication is 88
µJ per protocol session. A typical IMD consumes roughly
2.16 J per day [20] and our protocol, thus, has negligible
overheads.

6. DISCUSSION
While our evaluation shows that our protocol can facili-

tate secure and reliable key exchange, there are a few points
of discussion. First, our work has not considered patients
who suffer from cardiac arrest (i.e., the patient no longer
produces heartbeats) and arrhythmic patients (i.e., highly
irregular heartbeat patterns). In the former case, no heart-
beats are available to form a witness, while in the latter
case heartbeat-patterns are so erratic that they are often
classified as misdetections (our preliminary experiments re-
veal sensitivity scores well below 70%). In such cases of
severe cardiac emergencies, our key-exchange protocol can-
not be used to facilitate communication between the exter-
nal reader and IMD. However, it is important to realize that
patient safety significantly outweighs device security in these
situations, i.e., IMD-reader communication should be estab-
lished regardless of security. To do so, we believe that our
protocol should be complemented using criticality aware-
ness [7], where the itself detects if the patient is experiencing
an emergency and, if so, allow for fail-open access. While it
is generally thought that criticality awareness cannot detect
a wide range of medical emergencies reliably, both cardiac
arrest and arrhythmias are easy to detect, making it suitable
for these specific cases.

We have observed that the expected key-exchange time
varies between 60 and 77.6 seconds which, while acceptable
for a proof-of-concept system, should be further reduced for
practical reasons. Furthermore, it is known that certain sub-
jects (e.g., during exercise) have significantly reduced heart-
rate variability [18], which limits the randomness of each IPI
(leading to increased key-exchange times or lower success-
ful key-exchange rates). To overcome these limitations, i.e.,
obtain a more rapid key-exchange time while upholding se-
curity, we consider two possible modifications to our scheme:
First, our work has targeted a high exchange-reliability con-



straint of pex ≥ 1 − 10−6, which could be relaxed so as to
achieve more acceptable key-exchange times. Secondly, re-
cent work has focused on entropy-extraction techniques [18,
19] where less-random IPI bits are consolidated to form
(quasi-) random bits. We expect that both Tex and subjects
with limited heart-rate variability could benefit from such
techniques, as more randomness is obtained per IPI com-
pared to the simple bit-concatenation currently employed.

Finally, our protocol provides perfect secrecy by employ-
ing the fuzzy commitment security primitive for key ex-
change. A key limitation of fuzzy commitment, however,
is its inability of tolerating the order variance resulting from
heartbeat misdetection. To overcome this limitation, we
employ a classification algorithm to identify misdetections
and discard them prior to commitment. Alternatively, we
could have opted to use a fuzzy vault [9], which is an order-
invariant derivative of the fuzzy commitment scheme. There
are, however, two reasons why we believe that a fuzzy-vault
scheme does not provide a good match for our use case: 1)
Fuzzy vault places significantly higher overheads than fuzzy
commitment, as the ’vault size’ is typically several kB in
size, which has to be stored on and transmitted by the IMD.
We (and others [4]) expect that this introduces non-trivial
overheads, likely not suitable for the tight IMD-energy bud-
get; and 2) Fuzzy vault typically employs different error-
correcting codes (most often, Reed-Solomon codes [9]) to
achieve its order invariance. The main downside of these
codes is that they are not as well-suited for tolerating indi-
vidual bit flips as the BCH codes used in fuzzy commitment,
leading to extended code lengths.

7. CONCLUSIONS
In this work, we have proposed a new key-exchange proto-

col for implantable medical devices (IMDs). Heartbeats are
used to establish trust between an external reader and the
IMD, and key-exchange between the two entities is subse-
quently facilitated through fuzzy commitment. The protocol
has been evaluated in terms of how fast and reliable keys may
be exchanged as well as IMD overheads, considering a num-
ber of events that can happen in a realistic system, such as
inter-sensor variability and heartbeat misdetection. We have
proposed a simple, proof-of-concept classification algorithm,
which is used to eliminate the adverse effects of heartbeat
misdetection during trust establishment. Our protocol holds
promise for facilitating IMD-emergency communication and
exchanges an 80-bit key reliably in roughly one minute, at
a minimal overhead of 88 µJ for the IMD.
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