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High-Performance Hardware Accelerators for
Solving Ordinary Differential Equations

Abstract—Ordinary Differential Equations (ODEs) are widely
used in many high-performance computing applications. How-
ever, contemporary processors generally provide limited through-
put for these kinds of calculations. A high-performance hardware
accelerator has been developed for speeding-up the solution of
ODEs. The hardware accelerator has been developed both for
single and double floating-point precision types and a design-
space exploration has been performed in terms of performance
and hardware resources. The hardware accelerator has been
mapped to an FPGA board and connected through PCIe to a
typical processor. The performance evaluation shows that the
proposed scheme can achieve up to 14x speedup compared to a
reference, single-core CPU solution.

I. INTRODUCTION

Systems of ordinary differential equations (ODEs) play an
important role in modeling dynamically changing phenomena
and evolutionary processes mathematically. Many ODEs of
practical interest are nonlinear and, hence, they lack a closed-
form solution so that numerical methods are required to
compute approximate solutions [1].

High-performance computing (HPC) applications need pow-
erful infrastructures to solve millions of ODEs. Contemporary
processors have limited performance in solving these kinds of
equations. Specialized accelerators can be employed for speed-
ing up execution. However, most of the hardware accelerators
for ODE solvers are fixed and require significant effort to be
customized to specific applications.

In [2], a custom FPGA processor has been presented that
is used for the efficient solution of physical model ODEs on
FPGAs. A single differential equation processing element on a
Xilinx Virtex-6 FPGA executes several physiological models
faster than real-time while requiring only a few hundred FPGA
look-up tables (LUTs). The presented architecture shows that a
single differential equation processing element is 5–50 slower
than High-Level Synthesis(HLS)-based ODE-solver circuits,
however the differential equation processing element is 10–200
smaller in terms of hardware resources. However, the FPGA
processor cannot meet the high-throughput requirements that
are required by HPC applications.

In this paper, we present a family of high-performance
and configurable hardware accelerators that can reduce sig-
nificantly the execution time of the ODE solvers and can be
customized to meet the requirements of several ODE solvers.
The accelerators for the ODE solvers have been implemented
in reconfigurable logic and have been mapped to an FPGA
connected via PCIe with an contemporary Intel processor.
Performance evaluation shows that the hardware accelerator

can achieve up to 14x speedup compared to a typical desktop
processor.

II. ODE SOLVERS

We will demonstrate our proposed accelerators by solving
the Lotka–Volterra equations, also known as the predator-
prey equations [3]. These are a pair of first-order, nonlinear,
differential equations forming a 2x2 ODE system and are
frequently used to describe the dynamics of biological systems
in which two species interact, one as a predator and the other
as prey. The species populations u and v change through
time and their dynamic interplay is given by the following
equations:

du

dt
= f(u, v, t) (1)

dv

dt
= g(u, v, t) (2)

Here, the f and g functions are given by:

f(u, v, t) = 0.1 · u− 0.2 · u · v (3)

g(u, v, t) = −0.2 · v + 0.4 · u · v (4)

Other 2x2 ODE systems describing variations on this
Predator–Prey system, such as the dynamic interaction be-
tween two species of bacteria that compete for the same supply
of food [4], are expected to have similar performance results.

For the numerical solution of the above model, we
adopt four widely-used ODE solvers; namely, forward Euler
(FwdEuler), modified Euler (ModEuler), and strong stability-
preserving Runge-Kutta schemes of order two (SSP-RK2) and
three (SSP-RK3) [5]. All four methods are fully explicit
and thus, lend themselves to parallel implementations. The
computational complexity increases from the single-step, for-
ward Euler method to the two- and three-step Runge-Kutta
methods, so that the speedup of the FPGA implementation
over the software solution is expected to be highest for the
FwdEuler but still considerable for the ModEuler, the SSP-
RK2 and the SSP-RK3. The benefit of the latter is, however,
their higher temporal accuracy. Furthermore, the selected ODE
solvers are used as time integrators for partial differential
equations (PDEs), especially hyperbolic conservation laws,
and therefore, the development of efficient FPGA-accelerated
solution procedures has the potential to significantly speed-up
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Fig. 1. Architecture of the ODE solvers hosted in a FPGA board.

the numerical simulations of PDE problems as well, at a later
stage.

The main contributions of this paper are the following:
• A high-performance accelerator for solving ODEs that

can achieve up to 14x speedup;
• A design-space exploration of single and double floating-

point architectures; and
• A performance evaluation of 4 different solvers in terms

of throughput, speedup and hardware resources.

III. IMPLEMENTATION

A. Kernel

The input variables of the kernel on the FPGA are: step
size dt, the number of steps, the initial values for each u and
v and the coefficients of the f and g functions. The output
variables are the values of each u and v after the number of
steps. This leads to an implementation which can be executed
for different scenarios.

The selected ODE solvers were implemented using HLS
in single- and double-precision floating-point (FP) arithmetic.
In the kernel on the FPGA single processing units (PUs) are
created which calculate the values of the next step for a pair
of u and v, with the use of the f and g functions. To increase
the performance multiple units process the data in parallel for
multiple pairs of u’s and v’s. The pairs of u’s and v’s which
can be executed in parallel will be referred to as a block.
Per block, the elements are stored to the DDR memory of
the FPGA board. Because of the limited amount of resources
on the FPGA it is possible that not all elements are able to
fit into a single block. If this is the case, the elements are
divided to multiple blocks. First the final values of the current
block are calculated after which the next block is retrieved and
processed. This continues until the total number of blocks is

reached. If not all the block of elements are able to fit in the
DDR memory, they will be replaced with new ones and the
whole cycle will repeat until all elements are processed.

For each ODE solver the maximum number of PUs is
determined, which is constrained by limited resources on the
FPGA. For each of the presented experiments we choose the
optimal amount of blocks that fits the amount of elements of
the simulation. Additionally, the communication overhead is
minimized by transferring at once as much blocks as possible
from the Host CPU to the FPGA board.

Figure 1 presents the architecture of the implemented
system. Between the four different ODE solvers only the
parallel PUs differ. The Host PC continues to send sets of
blocks to the DDR memory until the entire amount of the
element is processed. The directive used in the Xilinx Vivado
HLS development platform to achieve the described archi-
tecture is #pragma HLS PIPELINE in each processing
unit, #pragma HLS UNROLL for the loop of the elements
at the current block, # pragma HLS PIPELINE for the
loop of the steps and #pragma HLS ARRAY PARTITION
dim=1 for the memory that stores the input and output data.
Additionaly, directives are used for the interface of the top
function to be implemented with the Xilinx AXI protocol.

B. Host

The access of the accelerator kernels from the Host CPU
can be achieved by using six functions that were developed
using C++. Those functions are responsible for creating the
CPU-FPGA connection, programming the FPGA board with
the correct kernel, initializing the memories required for the
communication, sending the element values, receiving the
results, breaking the link between the CPU and the FPGA
and freeing the reserved CPU resources.



At system startup the initialization function must be exe-
cuted once. This function creates the device descriptors used
for reads/writes to the accelerator and reserves the memory
required for the packets that are going to be communicated
between the CPU and the FPGA. This process should be
avoided to run at each call of the accelerator functions due
to the large execution overhead (6-7 seconds). To process data
with one of the accelerators (FwdEuler, ModEuler, SSP-RK2
or SSP-RK3) the corresponding function must be called that
transmits the data to the kernel and receives the results. During
the execution of the accelerator functions a set of blocks is
transmitted to the DDR memory of the FPGA board; then
the kernel processes each block sequentially. When all the
elements of a block are processed the results are transmitted
to the DDR memory and a next block is received for process.
When all blocks are processed the results are transmitted back
to the Host and a new batch of blocks is received. When the
system is about to be terminated or the accelerators are no
longer needed the terminating function releases the buffers
and closes the device descriptors, this process takes around
0.06ms.

The SDAccel tool from Xilinx was used for the integration
of the kernels to a final system [6]. The SDAccel tool provides
a framework for the development of an entire system consist-
ing of the Host running on a CPU and the kernels running on
a FPGA. A PCIe connection is utilized for the communication
of the Host and the Kernel.

IV. RESULTS & EVALUATION

An exact solution to the problem does not exist, therefore
an approximate solution based on the simplest among the con-
sidered ODE solvers (FwdEuler) will be used as a reference
solution. The parameters of the reference execution are given
in Table I, where the step size dt has been selected very small
so as not to break the system of non-linear equations. Based
on this step size, 10 million solver steps have been run to
calculate the solution for 10 simulated seconds. The global
accuracy error of the ODE solvers has be calculated as the
averaged sum of the differences compared to the reference
solution between the u’s and v ’s at 10 seconds of simulated
time.

As a next step, the FwdEuler solver is run again for
a larger (but sufficient) step size which leads to a global
accuracy error, as shown in Table II, which will be used
as the maximum allowable global accuracy error. Of course,
now a smaller number of steps is required for simulating 10
seconds of the solution. We repeat this process for each of
the other three more advanced solvers (ModEuler, SSP-RK2,
SSP-RK3), without exceeding the maximum allowable global
accuracy error, their results are also reported in Table II. We
can readily see that the more advanced the solver used, the
more relaxed the step size dt permitted and, thus, the smaller
the number of steps required for achieving a similar accuracy
error (at the end of 10 simulated seconds).

The Host CPU used is an Intel Core i5-4590 @ 3.30GHz
with 16GB RAM and CentOS 7 x64 operating system. The

TABLE I
VALUES USED TO CALCULATE REFERENCE SOLUTION USING THE

FORWARD EULER SOLVER.

Number of steps 107

dt 10−5

u(t = 0) 0.20

v(t = 0) 1.10

TABLE II
NUMBER OF STEPS, DT, AND AVERAGE GLOBAL ERROR FOR EACH

SOLVER.

Solver Number of steps dt Accuracy error (avg.)
(#) (sec) (–)

FwdEuler 10,000 0.001 2.01 ·10−5

ModEuler 60 0.170 1.86 ·10−5

SSP-RK2 60 0.170 1.86 ·10−5

SSP-RK3 12 0.830 1.92 ·10−5

FPGA board is the Alpha Data ADM-PCIE-KU3 board, fea-
turing a Xilinx Kintex Ultrascale (XCKU060 - FFVA1156)
FPGA. The targeted operating frequency for the systems in
the FPGA is set at 200 MHz.

For each solver the maximum number of parallel processing
units and the maximum number of blocks stored in the
DDR memory of the FPGA board are determined for both
single as double FP precision. Those results together with the
resources used on the FPGA are shown in Table III, Table IV,
Table V and Table VI for each of the ODE solvers, FwdEuler,
ModEuler, SSP-RK2 and SSP-RK3 respectively. The resources
are estimations for the kernels, as produced from the SDAccel
tool; the PCIe controller was not considered. From those tables
we can see the increased resources requirements between the
single and double precision implementations and between the
ODE solvers. Additionally, for each simulation the amount of
blocks stored in the DDR memory can be seen in Table VII for
FwdEuler, Table VIII for ModEuler, Table IX for SSP-RK2
and Table X for SSP-RK3. All simulations use the maximum
amount of parallel processing units.

As expected, when double precision is used the amount
of parallel processing units decreases in comparison to single
precision, due to higher FPGA resources requirements, which
limit the achievable speedup of the accelerator. The same
holds for all the ODE accelerators. Because the second-order
and third-order strong-stability-preserving Runge-Kutta ODE
solvers require more operations in comparison with the Euler
solvers, the usage of FPGA resources for the Runge-Kutta
ODE solvers per PU is higher. As a result the amount of
parallel PUs decreases when more operations are needed for
the ODE solver. Any further increase on the parallel PUs or
the number of blocks that are stored to the DDR memory, for
each of the ODE solvers, will cause the operating frequency
to drop under 200 MHz.

We measure the execution time of each solver from one
thousand up to one hundred million elements. For the measure-



TABLE III
FPGA RESOURCES FOR THE FWDEULER SOLVER IN SINGLE AND DOUBLE

FP PRECISION.

FF LUT DSP BRAM
(x36Kb)

Parallel
PUs

Blocks
in DDR

FPGA Single FP 53k 36k 182 2 120 240
FPGA Double FP 72k 46k 372 4 60 140

TABLE IV
FPGA RESOURCES FOR THE MODEULER SOLVER IN SINGLE AND DOUBLE

FP PRECISION.

FF LUT DSP BRAM
(x36Kb)

Parallel
PUs

Blocks
in DDR

FPGA Single FP 54k 38k 187 2 120 170
FPGA Double FP 57k 41k 406 4 40 220

TABLE V
FPGA RESOURCES FOR THE SSP-RK2 SOLVER IN SINGLE AND DOUBLE

FP PRECISION.

FF LUT DSP BRAM
(x36Kb)

Parallel
PUs

Blocks
in DDR

FPGA Single FP 49k 36k 271 2 80 220
FPGA Double FP 80k 54k 594 4 60 167

TABLE VI
FPGA RESOURCES FOR THE SSP-RK3 SOLVER IN SINGLE AND DOUBLE

FP PRECISION.

FF LUT DSP BRAM
(x36Kb)

Parallel
PUs

Blocks
in DDR

FPGA Single FP 57k 41k 370 2 80 200
FPGA Double FP 69k 50k 916 4 1 108

TABLE VII
USED BLOCKS (#) IN THE SIMULATIONS FOR THE FWDEULER SOLVER IN

SINGLE AND DOUBLE FP PRECISION.

Elements 1k 10k >10k

Single FP
Blocks in DDR

9 84 240

Double FP
Blocks in DDR

17 140 140

TABLE VIII
USED BLOCKS (#) IN THE SIMULATIONS FOR THE MODEULER SOLVER IN

SINGLE AND DOUBLE FP PRECISION.

Elements 1k 10k >10k

Single FP
Blocks in DDR

9 84 170

Double FP
Blocks in DDR

25 140 220

ments the function gettimeofday is used. Those measurements
are done with both single and double FP precision entirely
on the Host CPU and on the FPGA using the accelerators.

TABLE IX
USED BLOCKS (#) IN THE SIMULATIONS FOR THE SSP-RK2 SOLVER IN

SINGLE AND DOUBLE FP PRECISION.

Elements 1k 10k >10k

Single FP
Blocks in DDR

13 125 220

Double FP
Blocks in DDR

17 167 167

TABLE X
USED BLOCKS (#) IN THE SIMULATIONS FOR THE SSP-RK3 SOLVER IN

SINGLE AND DOUBLE FP PRECISION.

Elements 1k 10k >10k

Single FP
Blocks in DDR

13 125 200

Double FP
Blocks in DDR

103 104 # elements

TABLE XI
EXECUTION TIME (MS) FOR THE FWDEULER SOLVER IN SINGLE AND

DOUBLE FP PRECISION.

Elements 1k 10k 100k 1m 10m 100m
CPU

Single FP
1.75·102 1.75·103 1.75·104 1.75·105 1.75·106 1.75·107

CPU
Double FP

1.51·102 1.51·103 1.51·104 1.51·105 1.51·106 1.51·107

FPGA
Single FP

14.33 1.28·102 1.45·103 1.27·104 1.26·105 1.26·106

FPGA
Double FP

41.80 6.76·102 4.07·103 4.07·104 4.04·105 4.05·106

The results can be found in Table XI, Table XII, Table XIII,
and Table XIV for respectively the FwdEuler, the ModEuler,
the SSP-RK2, and the SSP-RK3 ODE solvers. Those results
show that a higher order solver need less time to execute.
This is because a higher order solver need less steps to
simulate the same amount of time, while staying below a
certain threshold accuracy error. Interestingly, the execution
times on the CPU are higher with the single FP implementation
than the double FP implementation. This may be explained
by the 64 bit architecture of the CPU, which uses for both
single and double FP variables the same floating point unit
(FPU) for computations. The FPU uses double FP variables,
therefore, single FP variables need to be converted to a double
FP variables [7]. This creates a penalty for using single FP
variables in comparison with using double FP variables. This
penalty is likely higher than the faster memory operations.

Figure 2 presents the speedup achieved through hardware
acceleration of each ODE solver for the single-precision FP
FPGA implementation, with respect to the single-precision FP
CPU implementation. As the complexity of the ODE solver
increases the achieved speedup decreases because less parallel
processing units can fit in the targeted FPGA and/or less blocks
can be stored in the DDR memory of the board. Figure 3



TABLE XII
EXECUTION TIME (MS) FOR THE MODEULER SOLVER IN SINGLE AND

DOUBLE FP PRECISION.

Elements 1k 10k 100k 1m 10m 100m
CPU

Single FP
2.50 24.67 2.46·102 2.46·103 2.46·104 2.46·105

CPU
Double FP

2.05 19.84 1.92·102 1.92·103 1.92·104 1.92·105

FPGA
Single FP

0.84 3.00 24.59 2.43·102 2.37·103 2.39·104

FPGA
Double FP

1.57 10.61 98.29 9.06·102 9.10·103 9.15·104

TABLE XIII
EXECUTION TIME (MS) FOR THE SSP-RK2 SOLVER IN SINGLE AND

DOUBLE FP PRECISION.

Elements 1k 10k 100k 1m 10m 100m
CPU

Single FP
2.18 22.25 2.17·102 2.17·103 2.16·104 2.16·105

CPU
Double FP

1.75 17.89 1.74·102 1.74·103 1.74·104 1.73·105

FPGA
Single FP

1.04 3.79 33.7 3.02 ·102 3.02·103 3.06·104

FPGA
Double FP

1.33 6.6 3 59.47 5.86 ·102 5.85·103 5.91·104

TABLE XIV
EXECUTION TIME (MS) FOR THE SSP-RK3 SOLVER IN SINGLE AND

DOUBLE FP PRECISION.

Elements 1k 10k 100k 1m 10m 100m
CPU

Single FP
0.70 6.69 66.87 6.60·102 6.61·103 6.59·104

CPU
Double FP

0.52 5.57 51.49 5.16·102 5.16·103 5.15·104

FPGA
Single FP

0.82 2.218 18.28 1.50·102 1.48*·103 1.48·104

FPGA
Double FP

9.73 94.79 9.41·102 9.48·103 9.50·104 9.49·105

presents the speedup achieved for the double-precision FP
FPGA implementation, with respect to the double-precision
FP CPU implementation. Here, the achieved speedups are
significantly lower than the speedup of the single-precision
FP implementations, with the SSP-RK3 accelerator requiring
more execution time than the software counterpart. Although,
for the double-precision SSP-RK3 accelerator the entire set
of the elements can be transferred to the DDR memory,
the lack of parallelism results in higher execution times.
Additionally, the synchronization barrier that exists between
the calculation of each step negatively affects the performance
of each implementation, because, it does not utilize the fully
pipelined PUs.
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Fig. 2. Achieved speedup of the accelerated ODE solvers for single FP
precision.

0

0,5

1

1,5

2

2,5

3

3,5

4

1k 10k 100k 1m 10m 100m

FwdEuler ModEuler SSPRK2 SSPRK3

Fig. 3. Achieved speedup of the accelerated ODE solvers for double FP
precision.

V. CONCLUSIONS

In this work we have implemented and evaluated the
performance of four different ODE solvers, which can be
highly parallelized by design. The hardware accelerators that
have been implemented can be tuned to meet the application
requirements of several ODE solvers. The performance evalua-
tion shows that the proposed hardware accelerators can achieve
up to 14x speedup compared to their sequential counterparts
when run on contemporary processors, thus reducing the
execution time of the predator-prey application significantly. It
can be seen that when using more resources of the FPGA with
increasing ODE-solver complexity or increasing precision, the
achieved speedup decreases because less parallelism can be
achieved on the FPGA.

VI. FUTURE WORK

Interesting future work involves pipelining the process of
the blocks that are stored to the DDR memory of the FPGA,
using as intermediate buffers extra registers of the FPGA.
This change in the design of the accelerator, shall lead to
the removal of the synchronization barrier, which can further
increase the performance of the hardware solvers. Addition-
ally, other applications with larger systems of ODEs can be
accelerated with the use of FPGAs.
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