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Abstract—The rodent whisker system is a prominent exper-
imental subject for the study of sensorimotor integration and
active sensing. As a result of improved video-recording technology
and progressively better neurophysiological methods, there is now
the prospect of precisely analyzing the intact vibrissal sensori-
motor system. The vibrissae and snout analyzer (ViSA), a widely
used algorithm based on computer vision and image processing,
has been proven successful for tracking and quantifying rodent
sensorimotor behavior, but at a great cost in processing time.
In order to accelerate this offline algorithm and eventually
employ it for online whisker tracking (less than 1 ms/frame
latency), we have explored various optimizations and acceleration
platforms, including OpenMP multithreading, NVidia GPUs and
Maxeler Dataflow Engines. Our experimental results indicate that
the optimal solution for an offline implementation of ViSA is
currently the OpenMP-based CPU execution. By using 16 CPU
threads, we achieve more than 4,500x speedup compared to the
original Matlab serial version, resulting in an average processing
latency of 1.2 ms/frame, which is a solid step towards real-time
(and online) tracking. Analysis shows that running the algorithm
on a 32-thread-enabled machine can reduce this number to
0.72 ms/frame, thereby enabling real-time performance. This
will allow direct interaction with the whisker system during
behavioral experiments. In conclusion, our approach shows that
a combination of software optimizations and the careful selection
of hardware platform yields the best performance increase.

I. INTRODUCTION

Throughout the animal kingdom, multiple systems perform
active sensing, such as the fingertips of primates, the antennae
of insects and the facial whiskers of rodents. The latter has be-
come a model system for studying the workings of sensorimo-
tor integration, thanks to the very well-defined anatomy of the
brain structures involved [1], [2]. Sensor guidance and control
are progressively recognized as the key challenges in adaptive
systems, whether natural or artificial. Understanding the neural
control over the whisker system could inspire new treatments
for human diseases involving motor disability and/or defects
in sensorimotor integration. Currently, the accurate tracking of
the rapid whisker movements is a bottleneck for such research.

Mice sweep their whiskers, or vibrissae, back and forth
during active exploration of their environment, enabling them
to navigate in the dark. Research on vibrissal tactile sensing
of rodents is moving to a critical stage. Emerging data raises
the prospect of establishing accurate relationships between

vibrissal movements in awake, exploring animals and accom-
panying brain activity [3]. Accomplishing this goal requires
objective, quantitative characterization of the kinematics of the
head and whiskers.

High-speed videography is non-invasive and offers great
temporal and spatial resolution. Its major disadvantage is the
complexity of image processing. High-speed films add up
to massive amounts of data. For this reason, software tools
have been developed for automated motion analysis, with
a most efficient one being the BIOTACT Whisker-Tracking
Tool (BWTT) [4]. The main algorithm behind BWTT is the
vibrissae and snout analyzer (ViSA)1, which has excellent
precision in whisker tracking [5]. It is designed for tracking
the head and for extracting whisking parameters, while not
requiring whisker manipulation and not requiring to limit
mouse movement to unacceptable levels.

Unfortunately, the ViSA processing rate lags far behind
the data-generation rate of modern cameras. The acceleration
of the whisker-tracking algorithm could speed up behavioral
and neurophysiological research considerably. It could also
become the cornerstone for supporting online whisker track-
ing, which shall not only eliminate the need for maintaining
large storage to keep raw videos, but shall also allow novel
experimental paradigms based upon real-time behavior.

This work focuses on accelerating ViSA through exploring
various software and hardware techniques. The contributions
of this paper can be summarized as follows:

• Rapid optimization of the original Matlab toolbox using
data parallelism and GPU acceleration, resulting in 2x
speedup while retaining the same level of user experience.

• Three-orders-of-magnitude acceleration of the ViSA algo-
rithm by porting to C language, optimizing and combin-
ing the OpenCV library with various HPC technologies.

• Detailed profiling of the original BWTT toolbox and ex-
tensive evaluation of all implemented algorithm versions.

This paper is organized as follows: In Section II, related
whisker-tracking techniques are presented. In Section III,
ViSA is explained in detail. In Section IV, the implemented
optimized and accelerated versions of the BWTT toolbox are

1In this paper, the terms BWTT and ViSA shall be used interchangeably.



presented. Evaluation results are given in Section V. Finally,
in Section VI, conclusions are presented.

II. RELATED WORK

Over the last decade, three general approaches to whisker-
tracking techniques have been proposed: 1) tracking whisker
intersection with a sheet of light [6]; 2) using electromyograms
(EMGs) on the facial muscles [7]; and 3) high-speed videog-
raphy. Every method has its merits. The light sheet grants
high spatial and temporal resolution but reveals only the 1-D
intersection points, requiring restraining the animal so that its
whiskers are located in the plane of light. EMG recordings
are invasive and measure the activity patterns of the facial
muscles, but not the actual whisker movements. In contrast,
high-speed (>500 Hz) videography is non-invasive and can
record the whisker movements of behaving test subjects.

Nevertheless, high-speed videography has its own method-
ological challenges. Whiskers usually move in complex pat-
terns and at extremely high speeds [8]. Neighboring whiskers
could partake distinct trajectories. Furthermore, whiskers are
thin hairs – they attenuate to a thickness of a few micrometers
– resulting in limited imaging contrast. To address these
challenges, researchers have developed different methods.

In [9] and [10] whiskers of unconstrained animals are traced
but require trimming to prevent occlusions and intersections.
In [11], markers need to be glued to single whiskers. How-
ever, whisker clipping or tagging unavoidably decreases the
resemblance of the animal’s natural sensorimotor strategy.

Furthermore, there are several approaches using the method
of best intensity overlap which establishes the whisker position
choosing a spline [10] or segments [12] that overlap the image
pixels with a larger intensity sum. However, image noise
can compromise the robustness of these approaches. Another
approach implements iterative joining of nearby pixels of
similar width and orientation in traces [13]. Yet, it fails to
pick the best segments based on a global optimization taking
into account every combination of the detected intensity nodes.

Finally, the average angle at the base of a set of whiskers
can be measured [14]. This approach transfers the input
image into a polar-coordinate system, where whiskers are
presented as almost straight lines. The transformed image is
binarized by applying a Hough-transform voting scheme to
detect the orientation of these lines. This is the most sensitive
aspect of the procedure since obtaining optimal parameters
that are able to select all whiskers is difficult. The ViSA
algorithm considered in this work employs and improves on
this final approach and is capable of tracking the animal snout
and extracting whisking parameters without requiring whisker
manipulation or placing any constraints on animal movement.
Overall, ViSA is a reliable algorithm worth optimizing and
accelerating.

III. VISA ALGORITHM

To trace the head and extract relative whisking parameters,
ViSA is composed of two modules. The first module tracks
snout position, orientation and contour over time. It enables

Fig. 1. Snout-template fitting on generic contours to detect snout location
and orientation (Images modified from [5])

Fig. 2. Whisker angle is computed by approximating whiskers as linear
segments in a narrow band around the snout (Images modified from [5])

constructing a head-centered coordinate system for describ-
ing whisker-relative positions. The second module extracts
whisker segments within a user-defined distance from the
snout of the test subject. Then, it provides a parameterization
of whisker movement over time.

A. Head detection

1) Generic-contour extraction: Contour detection is re-
quired to generically distinguish all contours within the frame.
Video frames are converted to binary images after thresholding
to separate whiskers and head silhouettes out of the light
background. Then, whiskers and also noisy points are filtered
out using morphological closing. The pixels of the binary-
image boundaries are extracted (yellow outline in Figure 1A).

2) Snout-template fitting: Then, the algorithm traces the
head based on the extracted generic outline. It uses a fixed head
template (Figure 1B, red outline) to match to the extracted
generic contours (Figure 1B, blue outlines). The idea of
template fitting is to minimize perpendicular distances between
detected contours and the fixed template (Figure 1C, cyan line
segments). Therefore, partial occlusions or local asymmetries
can be overcome for the reason that the symmetric-points
count can easily outweigh them. After the snout template is
matched, represented as the green contour in Figure 1D, the
local generic-contour substitutes the template to create a fit
for the snout edge pixel-by-pixel.

B. Whisker-shaft detection and parameter extraction

1) Background subtraction and masking: Background sub-
traction and mask multiplication highlight the whiskers in the
original image frame (Figure 2A) as shown in Figure 2B.
To identify the background, ViSA accumulates brightest val-
ues over the course of a video-recording session. Then, it
multiplies a binary mask with the resulting image to select
pixels within a radius from the snout contour. Finally, standard
bicubic interpolation is used to increase image resolution,
followed by Gaussian smoothing to decrease recording noise.



2) Whisker-tree creation: This phase first converts the
video frame to a head-centered polar system. At a given
distance from the head contour, local-maxima are detected on
1-D arrays of pixel intensity values and sorted by the angular
coordinate. There are two parameters regulating the intensity-
peak selection process: the minimum intensity threshold used
to diminish incidences of noise, and the minimum angular
distance used to prevent adjacent peaks being perceived inside
the same shaft. Figure 2C gives an instance of intensity-peaks
detection, with dots indicating their position. The extracted
intensity peaks form a tree structure, known as whisker tree.

3) Clustering using Polyfit: Segment detection is formu-
lated as a process of clustering, with the peculiarity that the
cluster center is a line passing two peaks, termed as source and
sink node. Source and sink nodes are classified based on their
distance from the head contour. Extracted peaks positioned
near the snout contour are marked as source nodes and those
close to the external border of the mask are marked as sink
nodes. Source nodes (black dots), sinks nodes (blue dots), and
central nodes (red dots) – remaining nodes situated between
sources and sinks – are shown in Figure 2C. ViSA utilizes the
Matlab Polyfit function (i.e. polynomial-curve fitting) to create
connections. It constructs a polynomial mathematical function,
which has the best fit to a series of input data points.

4) Candidate-segments selection: In the final phase, clus-
ter candidates are ranked based on the count of collinear
nodes, which are nodes situated within a predefined distance.
The collinear nodes are also marked as candidates for this
cluster. Figure 2D shows an example, and colored segments
are plotted with a width, which indicates the concept of
“covering” regarding a distance range near a line segment.
Each time a candidate is selected, whisker-tree nodes within
the user-defined distance range are assigned to that cluster
and stricken off from other clusters. The process is reiterated
until no clusters score above the distance threshold, indicating
that there do not exist enough collinear whisker-tree nodes
remaining to form a whisker shaft.

IV. APPLICATION PROFILING

BWTT has been profiled through use of the Matlab Profiler
on a representative video chunk of a head-restrained mouse
(50,000 frames). The BWTT processing time is approximately
80 hours on a modern CPU. Results are illustrated in Figure 3.

Inefficient functions within the algorithm could be identified
and studied for alternatives. As indicated in Figure 3, Polyfit
takes up 68.58% of the execution time, which is also consistent
with the actual computational complexity of this portion of
the algorithm as rationalized next. In the cluster-generating
phase, ViSA extracts intensity peaks possibly situated on the
whisker shafts stored as a whisker tree for each frame. Starting
here, the amount of computation escalates exponentially. For
every (proximal) source node, the algorithm initially pairs it
with all (distal) sink nodes and creates candidate segments by
applying Polyfit. Every candidate segment is sorted according
the number of collinear whisker-tree nodes. All possible
combinations between source and sink nodes generate a large

Fig. 3. Profiling of the BWTT toolbox; per-frame execution times shown

candidate space. Then, the method sorts segments according
to the number of approximated nodes and runs an iterative
selection. At every step, the segment that approximates the
maximum number of tree nodes not yet assigned to an already
selected segment is selected, leading to optimized partitioning.

Tackling this bottleneck required searching for a simplifi-
cation of Polyfit or, even, for the substitution of the entire
clustering methodology. An approach of lower complexity in
this stage of ViSA could improve the overall performance
significantly. Secondary and tertiary algorithm bottlenecks
could be tackled thereafter. Another fundamental design im-
provement to make is the porting of ViSA to a low-level
programming language, since it could intrinsically perform
better than Matlab in which BWTT is written. It would also
more easily adapt to a high-performance computing (HPC)
system. In the end, C was chosen because it could easily be
used as the starting point for porting onto different hardware
platforms, especially to Maxeler Dataflow Engines (DFEs) and
NVidia GPUs.

V. IMPLEMENTATION

The optimization steps followed in this work are illustrated
in Figure 4. To verify the potential for improvement and to
establish a reference point for all algorithm optimizations,
some initial modifications and optimizations were made to the
BWTT toolbox in Matlab while preserving the original GUI.

A. Matlab-tool improvements

ViSA traces the snout movement of the test subject with
the assistance of a Kalman space filter, enabling the tracking
of freely moving mice. In head-restrained animals, this is not
required, thus for the current dataset the Kalman filter has been
removed from the processing pipeline of the toolbox. Another
change is that a display window originally depicting whisker
tracking per frame in the GUI, has been disabled to improve
processing speed.

Our test indicates that the task-level parallelism supported
by the original toolbox by parallelizing whisker-tracking tasks
is not efficient enough to offer scalable performance speedup.



Fig. 4. Design optimization strategy followed: Dark blocks originally sup-
ported; light blocks implemented here; ultra-light blocks not implemented

Therefore, possible parallelization of individual functions was
explored using data-level parallelism.

1) Data-level parallelism (CPU multithreading): The fol-
lowing functions are accelerated using data-level parallelism:

• Clustering using Polyfit: Polyfit is the foremost target to
be accelerated (Figure 3). The procedure of clustering
includes three loops (Figure 5). There is no data de-
pendence in the first two loops, making this part ideal
for parallelization. The third loop analyzing the whisker-
tree nodes’ fitting status requires the intermediate curve
model from previous iterations. Therefore, it is logical
to parallelize only the first two loops and append the
third loop within the parallelism. As a first acceleration
approach, the design was modified to run over multiple
threads. The multithreaded version first allocates blocks
of source- and sink-node pairs. Each thread accepts the
node data as input and calculates the curve model using
Polyfit. After the curve model is constructed, the process
checks all the whisker-tree nodes to obtain intensity peaks
located on or extremely near the approximated curve.
This approach of multithreading causes reading conflicts
while each thread has to iterate through the same set of
whisker-tree nodes. Since the whisker-tree data is read-
only for the clustering process, any read conflicts do not
inflict a performance penalty.

• Whisker-tree creation: The next hotspot after Polyfit is
the Matlab built-in function for image dilating, Imdi-
late. Multithreading is not adept at improving built-
in functions, hence the function of image dilation is
left for other acceleration methods as described below.
Then, the succeeding hotspot lies in the whisker-tree
generation task. The procedure for creating the whisker
tree translates to a local-maxima detection problem, by
examining neighboring points on the path perpendicular
to the whisker-shaft direction, which is the path with the
same radial coordinate in the head-centered polar system.
Pixels can be grouped by radial coordinate, where local
maxima detection for groups with different radial coor-

Fig. 5. Control-flow diagram of whisker-shaft clustering invoking Polyfit

dinate can be processed in parallel using multithreading.
2) GPU acceleration: Many Matlab built-in functions are

GPU-enabled nowadays, which leads to significant accelera-
tion of Matlab scripts originally executed on the host CPU.
Inline CUDA kernels are also supported in Matlab scripts. We
have, thus, accelerated further the CPU multithreading data-
parallelized version by enabling the GPU enhancements:

• Polyfit kernel: CUDA makes usage of a concept called
thread block size to allocate available jobs. The block
size of the clustering problem has been constructed to
be two-dimensional, where the index of source and sink
nodes are the horizontal and vertical axes, respectively.

• Image-processing kernels: Several succeeding top
hotspots of the algorithm, like the detection of
generic contour and background extraction, all contain
considerable portions of Matlab built-in image-processing
functions. Many Matlab built-in functions have been
GPU-enabled, including all the image-processing
functions mentioned above. These functions support
Matlab gpuArray objects as input arguments, designating
the GPU for executing the desired function.

B. C implementations

Migrating from an interpreted to a compiled language
requires changes to the coding style as well as most of the
data structures. Since C is not object-oriented, all of the task
and function classes had to be replaced with sequences of
imperative statements and invocations of sub-functions. The
design in C as a procedural language is top-down using as
skeleton the control flow of ViSA and with sub-functions
implementing details within each procedure.

1) C-GPU-accelerated version: GPU acceleration was also
considered for the C implementation. The 2-D thread hierarchy
used for the Polyfit kernel in Matlab is visualized in Figure 6.
The block size is bounded by the amount of processing threads



Fig. 6. 2-D CUDA-thread hierarchy for Polyfit kernel in C-GPU version

existing in the target GPU platform. The grid dimensions
are determined by the problem size, for organizing enough
CUDA blocks for all repetitions. Since the algorithm requires
clustering each pair of source and sink nodes, it is sensible
to allocate the grid height and width based on the number of
source and sink nodes. Therefore, the grid size is determined
by the following equations:

GridWidth=

⌈
NumofSourceNodes

BlockSize

⌉
, GridHeight=

⌈
NumofSinkNodes

BlockSize

⌉
where the ceiling value of the divisions is taken so as not
to omit any desired execution. In this design, most of the
host code runs in the CPU and the procedure for Polyfit is
accelerated on the GPU.

Choosing a proper block size strongly depends on the
GPU-device specifications. We used a Maxwell-based GeForce
GTX Titan X GPU board, containing 24 multiprocessors,
each possessing 128 threads. Therefore, in our design, the
maximum amount of threads available for each block is 128.
Since in Polyfit other device specifications, like memory size
or bandwidth, are not the bottleneck, a suitable 2-D shape
utilizing all available threads is the best design choice. Possible
combinations are: 16x8, 32x4, 8x16, 4x32, 2x64, and 64x2.
Our tests indicated that the amount of source nodes is normally
larger than the amount of sink nodes, and usually at a ratio
of 2:1, hence a block size of 16x8 was found to be the best
choice for diminishing padding at the border regions.

2) C-DFE-accelerated version: Polyfit acceleration was
also considered through the use of a Maxeler DFE [15].
Maxeler DFEs are HPC nodes based on FPGA technology and
are most suited for stream-based processing. DFE boards also

Fig. 7. Dual engine for Polyfit in C-DFE version; blue blocks are data buffers

incorporate a high-bandwidth, multichannel, highly parallel,
customizable interface to the on-board DRAM resources (up
to 96 GB) making it ideal for image-processing applications.

Our DFE implementation receives input data in streaming
fashion and achieves acceleration through aggressive loop
unrolling and super-pipelining of the dataflow kernels. For the
Polyfit function, there are three nested loops to be considered,
where the first two compute the curve model defined by pairs
of source and sink nodes, and the third loop calculates the 3-D
fitting table by going through all whisker-tree nodes. The C-
DFE-accelerated implementation comprises two cascaded DFE
engines for deploying this function (Figure 7). The first engine
processes the streaming input of source- and sink-node indexes
and generates curve models using Polyfit. Then, the model
parameters of the corresponding candidate segment curves are
passed to the second engine for iterative analysis on the curve
fitness in the collection of the whisker tree.

The bottleneck of the streaming design lies in the second
engine. Curve-model construction in the first engine executes
O(N2) times, as explained in the previous section, but curve
fitting executes O(N3) times. The second engine is designed
to accept streaming input vectors, which groups variables
together and allows simultaneous streaming of multiple vari-
ables. This approach could intrinsically flatten the iterations at
the cost of more DFE resources and diminish the amount of
repetition in the second engine. However, there is a restriction
on the maximum vector size (in handled variables) allowed
in the second engine due to FPGA resource limitations.
Additionally, dataflow architectures resulting from different
vector sizes may lead to dissimilar timings.

The Maxeler hardware places an additional constraint on the
stream size between host and DFE. Its current SLiC (Simple
live CPU) interface only supports streaming-data sizes that are
multiples of 16 Bytes. Therefore, the source and sink nodes
streaming in the first engine are designed to be zero-padded
to satisfy the requirement of the DFE interface, albeit at an



Fig. 8. Control-flow diagram of OMP version

impact on speedup. In contrast, performance is improved by
duplicating the whisker tree in the DFE on-chip memory for
use during fitness-table generation in the second engine, thus
avoiding constant access to the host RAM.

3) OMP-accelerated version: After the removal of the
Kalman space filter for snout tracing, there is no data de-
pendency between adjacent frames. Therefore, parallelism
among frames is supported, which is innately well-balanced
and superior to executing multiple whisker-tracking tasks in
parallel, as was originally supported in the toolbox.

To exploit the available parallelism, CPU multi-threading
has been considered (task-level parallelism). We employed an
Intel Xeon E5-2690 processor @2.9GHz, containing 8 cores,
each with 2 threads; it could offer concurrent processing on 16
threads for our tracking problem. To this end, the sequential C
version of ViSA has been adapted with Open Multi-Processing
(OpenMP, OMP). OpenMP is an application-programming in-
terface (API), which supports multi-platform, shared-memory
multiprocessing programming in C. It contains a group of
library routines, compiler directives and environment variables
that manipulate the run-time behavior of processors. After the
preprocessing phases of the algorithm, the OMP-accelerated
implementation parallelizes the whisker-tracking functions for
each frame, as illustrated in Figure 8.

The whole process executes in batches, where each whisker-
tracking batch runs in parallel on multiple CPU threads and
its results are sequentially written in an output file. The batch
size was adjusted based on the system memory available
for storage of intermediate data. However, the batch size
has been shown to have a minimal effect on the overall
performance due to the high efficiency of multithreading, as
will be demonstrated in Section VI. In our modified ViSA

Fig. 9. System architecture of OMP+DFE version (1 Batch = 16 Frames)

algorithm, data dependencies only exist in the construction of
the output array holding the whisking parameters, which needs
to be stored as the sequence of video frames. The number
of extracted whiskers per frame is variable but always <20.
Therefore, we preallocate a maximum output array size to be
able to maintain a maximum volume of parameters for the
extracted whiskers.

4) OMP+DFE-accelerated version: The OMP-accelerated
implementation produces satisfactory global parallelism, while
the DFE-accelerated implementation has also been proven
competent. Therefore, a straight-forward design option would
be to combine them and create a hybrid implementation. One
approach is to employ multiple dedicated DFEs so that multi-
ple threads have a direct and independent connection each to
its own DFE. However, the Maxeler SLiC cannot support DFE
initialization from multiple threads for now. An alternative
solution is to set an intermediate stage to collect whisker
trees and relative data from multiple threads, and then stream
them into a DFE kernel for pipelining (Figure 9). However,
performance results of the second solution were unsatisfactory,
resulting from continuously invoking synchronization barriers
after the multithreaded processing of each whisker tree. Data
collection in the intermediate stage breaks the parallelism
by generating dependencies. Apparently, the achievable DFE
acceleration cannot compensate for the barrier penalty. When
the Maxeler tools begin supporting multithreaded DFE initial-
ization, the first solution is expected to produce considerable
benefits compared to the pure OMP implementation.

VI. EVALUATION

A. Experimental Setup

All designs implemented here have been assessed through
profiling on a group of benchmark videos. The evaluation
set contains 10 randomly selected whisker videos from head-
restrained mice. The detection accuracy was proven to be
consistent with the output of the original BWTT. Evaluation
was conducted on a server hosting an Intel Xeon E5-2690
processor with 16 threads running at a frequency of 2.9GHz
and also houses a Maxeler Maia DFE. The GPU used for
testing was a Maxwell-based GeForce GTX TITAN X GM200
in a separate computer box. We used the Intel VTune Amplifier
software for collecting performance figures.



TABLE I
H/W-ACCELERATOR SPECIFICATIONS

Specification Maxeler Maia DFE NVidia Titan X

On-Board DRAM 48 GB 12 GB
RAM bandwidth 76.8 GB/s 336.5 GB/s
On-chip memory 6 MB (FPGA BRAMs) 3 MB (L2 cache)
Number of chip cores Not applicable 3072 CUDA cores
Chip frequency Design-dependent 1 GHz
Power consumption 140 W 250 W
IC process 65 nm 28 nm

The specifications of the Maxeler Maia DFE and NVidia
Titan X GPU equipped on the server are listed in Table I.
This GPU model contains 24 multiprocessors, each with 128
threads. The DFE usually cannot achieve frequencies as high
as GPUs, but the dataflow execution model and the on-chip
(BRAM) memory ensure higher efficiency when the workload
is suitable. Last but not least, the lag between the DFE and the
GPU process technology have to be taken into account when
comparing the various performance results.

B. Overall performance comparison

The execution-time comparison is summarized in Figure 10,
and the respective performance improvements compared to the
original, serial Matlab code are illustrated in Figure 11. Initial
attempts at improving the original Matlab version of BWTT
by introducing data-level parallelism are proven superior to
the original task-level parallelism. The GPU-accelerated, data-
level parallelized version has the best processing speed among
different Matlab implementations, resulting in a 12.9x speedup
compared to the original serial BWTT code.

A significant performance speedup of 416.8x was observed
when switching from the original Matlab code to a serial C
implementation. The C-GPU and C-DFE-accelerated versions
introduced further performance enhancements via porting the
most computationally intensive components to the two acceler-
ator nodes – with speedups of 573.4x and 628.4x, respectively.

Besides, by exploiting the underlying task-level parallelism,
the OMP-accelerated solution achieved the best processing
latency at 1.21 ms/frame, which satisfies real-time processing
at more than 500 Hz frame rate. This represents a 4,767x
speedup compared to the original, serial Matlab version of
BWTT and a 851x speedup compared to the original, task-
level parallelized Matlab version.

The final attempt to create a hybrid computing system by
combining OMP and multiple DFEs did not lead to additional
performance improvements because of the multithreading bar-
riers needed for integrating the two platforms. However, the
analysis in the previous section reveals that, with support by
future versions of the Maxeler SLiC interface, the OMP+DFE
solution could potentially enhance the overall performance
further.

C. C-GPU vs. C-DFE kernel

We, next, took a closer look at the C-GPU-and C-DFE-
based solutions. For the C-GPU version, a CUDA kernel was

Fig. 10. Average per-frame execution-time comparison of all optimized
versions of BWTT (compared to the original serial Matlab version)

Fig. 11. Average speedup comparison of all optimized versions of BWTT
(compared to the original serial Matlab version)

developed to accelerate the Polyfit function. Different 2-D
block sizes which fit the specifications of the particular GPU
were investigated, and results are summarized in Table II. Tests
indicate that the 16x8 block size, that expands all threads per
GPU core and fits best the dimension of source and sink nodes,
delivers the best performance of the GPU kernel; it is the one
included in the overall scores of Figures 10 and 11.

For the C-DFE version, a dual DFE kernel was implemented
for accelerating Polyfit. A Maxeler DFE reconfigures its
FPGA to construct an arithmetic architecture for programming
specified in a particular dataflow language. Therefore, resource
usage varies with different implementations, which is worth
considering as a measure for performance and efficiency.
For the DFE-based version of Polyfit, two cascaded DFE
engines were implemented, with the second engine being the
performance bottleneck due to involving more computational
loops. Since acceleration in the DFE comes in part from
unrolling loops, various loop-unrolling versions of the second
engine were developed, resulting in different FPGA usage and
speed patterns, as documented in Table III. The unrolling
factor in the second kernel increases with selecting larger
vector sizes, but at the cost of a higher resource usage. A
vector size of 32 variables is the maximum achievable size
afforded by the Maia DFE. However, the increase in vector



TABLE II
BLOCK SIZE VS. POLYFIT CUDA-KERNEL EXECUTION TIME (EXCLUDING

OVERHEADS FOR COMMUNICATION AND GPU-MEMORY OPERATIONS)

Block Size Kernel Execution Time (ms/frame)

4x4 0.971
8x8 0.359
8x16 0.213
16x8 0.189

TABLE III
EFFECT OF DIFFERENT VECTOR SIZES ON PERFORMANCE AND USED

RESOURCES FOR THE DFE KERNEL (N/A: FREQUENCY NOT ACHIEVABLE)

VS Resource Usage (%) Execution Time at Set
Frequency (ms/frame)

LUT FF BRAM DSP 100
MHz

150
MHz

200
MHz

250
MHz

1 2.91 1.63 3.27 0.30 6.32 4.46 3.57 2.95
4 14.37 8.41 5.90 1.42 2.17 1.73 1.41 1.32
8 27.71 18.64 7.86 3.18 1.46 1.21 1.03 N/A

16 53.35 27.11 8.91 4.85 1.08 0.95 0.89 N/A
32 89.17 52.16 13.17 9.52 0.91 N/A N/A N/A

size is detrimental to timing, resulting in a smaller attainable
chip frequency. The design choice of 16 variables as vector
size achieving a clock frequency of 200 MHz results in the
best overall performance.

Table IV presents the Polyfit execution results when run on
the GPU and the DFE. Evaluating kernel execution time alone,
the GPU achieves 29.21x speedup compared to the original,
serial Matlab code. By taking into account GPU book-keeping
tasks and and memory-access tasks, overall speedup drops to
approximately 3.62x. The DFE kernel is 6.23x faster than the
serial Polyfit. The result indicates that the DFE kernel performs
slightly better than the GPU kernel (1.71x).

The Maxeler OS cannot report the initialization and data
communication time for DFE kernels. However, since data
is transfered through PCIe – the same bus channel between
GPU and CPU – data-transfer times should be more or less
similar. However, during DFE execution all intermediate data
are stored in the FPGA registers close to the compute units,
thus reducing off-chip memory accesses, resulting in a better
performance compared to the GPU, the process-technology
mismatch between the two devices notwithstanding.

D. Performance Scalability

All design implementations were tested in terms of their
scalability, which could also be referred to as the perfor-
mance stability with respect to the input video size or frame
count processed. When employing task-level parallelism in the
original Matlab code, profiling reveals relatively poor scaling
properties; see Figure 12. The Matlab implementations in this
project based on data-level parallelism do not suffer from the
size increase of the input videos. The C implementation also
scales linearly with different video sizes.

The OMP-accelerated version running on 16 threads has a
processing latency of 1.2 ms/frame. Given that the application
does not appear to be approaching a saturation point any time

TABLE IV
EXECUTION-TIME COMPARISON OF POLYFIT KERNELS

Execution Time (ms/frame)

C
Polyfit 5.55

GPU
Polyfit

Cuda
Malloc

Memory
Copy-in

Kernel
Exec.

Memory
Copy-out

Cuda
Free

0.42 0.053 0.19 0.63 0.24

1.53

DFE
Polyfit 0.89

Fig. 12. Performance scaling of Matlab versions with growing input sizes

soon in the multicore CPU, it is interesting to examine its
performance scalability, i.e., to determine whether this im-
plementation with frame-level parallelism could gain benefits
from using more threads. The processing speed was measured
on the OMP-accelerated version using a different number of
threads; the result is shown in Figure 13. With an increasing
thread count, performance gains appear to be almost linear, and
the extrapolation of the curve indicates that using a machine
with 32 threads can bring over 19x speedup to the single-
thread mode. In more detail, the OMP-accelerated version
is sufficient for online processing at 500 Hz rate (or 2ms
latency) using 10 threads and the ideal processing rate at 1
KHz (or 1 ms latency) using 21 threads. Additionally, in on-
line mode, input data will arrive in batches, exempting the need
for decoding videos and, thus, leading to even lower latencies.

E. Memory usage

We also examined the memory usage of all designs using
the Intel VTune profiler [16]. All implementations have a low
requirement on memory bandwidth (<2 GB/s) which indicates
that it is not a bottleneck. The OMP-accelerated version has the
largest amount of memory usage among all designs, because
it uses frame-level parallelism implicitly requiring more con-
current memory access than all other versions. The maximum
DRAM single-package bandwidth is 42 GB/s for the CPU
architecture used, which is sufficient for the application at
hand. For the C-GPU-accelerated and the C-DFE-accelerated



Fig. 13. Speedup scaling of OMP version using increasing numbers of threads
as compared to a single-thread execution in C

versions, the memory requirements for Polyfit per each frame
are approximately 22 MB/s; thus, the GPU GRAM and DFE
RAM supported bandwidths are sufficient.

VII. CONCLUSIONS

In this paper, we have considered acceleration alternatives
for a specific rodent whisker-tracking algorithm, ViSA, with
the purpose of benefiting the neuroscientists in need of fast
offline tracking (500 Hz), and ultimately online tracking (1
KHz) of video recordings. We developed six different software
and hardware implementations of the algorithm and compared
their performance. There are two Matlab-based versions (a
data-level parallelized version and a GPU-accelerated, data-
level parallelized version), which introduced computing par-
allelization to the original BWTT toolkit. A C version was
developed, too, as a basis for further deployment to high-
performance computing systems. And algorithm-level opti-
mization was also engaged along the development process. The
change in programming language led to a large performance
boost, around 400x speedup compared to the original Matlab
toolbox. Then, four C-based versions (a GPU version, a DFE
version, an OMP version, and an OMP-DFE hybrid version)
were implemented.

Data-level parallelism was first exploited to accelerate indi-
vidual time-consuming steps of the algorithm. Good speedups
have been achieved both in Matlab and in C, however perfor-
mance bottlenecks arose due to some non-parallelizable pro-
cesses. Consequently, task-level parallelism was also explored.
More specifically, an OMP version of the algorithm utilizing
16 CPU threads was developed, resulting in 1.21 ms/frame
processing speed and 4,767x speedup compared to the original
Matlab-based algorithm. This rate fulfills the 500 Hz real-
time processing requirement, and is shown to be capable of
reaching 1 KHz ideal real-time performance when using a
CPU with 21 threads or more. Our analysis also indicates that,
if the DFE hardware and its SLiC interface supports host-code

multithreaded utilization in the future, adding DFE support
at the thread level shall lead to even higher performance
improvements.
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