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a b s t r a c t 

Mathematical models with varying degrees of complexity have been proposed and simulated in an at- 

tempt to represent the intricate mechanisms of the human neuron. One of the most biochemically re- 

alistic and analytical models, based on the Hodgkin–Huxley (HH) model, has been selected for study in 

this paper. In order to satisfy the model’s computational demands, we present a simulator implemented 

on Intel Xeon Phi Knights Landing manycore processors. This high-performance platform features an x86- 

based architecture, allowing our implementation to be portable to other common manycore processing 

machines. This is reinforced by the fact that Phi adopts the popular OpenMP and MPI programming 

models. The simulator performance is evaluated when calculating neuronal networks of varying sizes, 

density and network connectivity maps. The evaluation leads to an analysis of the neuronal synaptic 

patterns and their impact on performance when tackling this type of workload on a multinode system. 

It will be shown that the simulator can calculate 100 ms of simulated brain activity for up to 2 mil- 

lions of biophysically-accurate neurons and 2 billion neuronal synapses within one minute of execution 

time. This level of performance renders the application an efficient solution for large-scale detailed model 

simulation. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

m  

r  

l  

t  

i  

s  

t  

M  

[  

t  

c  

r  

c  

f

 

1. Introduction 

The last decade has witnessed a great amount of advances

in the field of computational neuroscience. Interest has been

peaking globally towards the human brain [1–3] , marking it as an

endeavour of paramount importance to the academia and industry

alike. Neuroscientists have been gradually unveiling details of

neuron operation. Using this knowledge, there is a wide research

interest in studying the behavior of single-neurons, as well as

small networks of neurons and eventually brain-sized populations

of neurons. To this end, software tools exist aimed at simulating

neuronal clusters ranging in size from a single neuron to networks

matching a small animal’s brain in size [4] . 

Simulating these neuronal networks on various platforms is an

active field of research; a major challenge is the sheer computa-

tional complexity that many of these neuron models entail. Aiming
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t larger, more accurate neuron networks, neuroscientists require

ore memory and extended execution times to produce relevant

esults. Even the less complex models present significant chal-

enges, in terms of computation, data-transfer rates and storage,

hat scale with the studied neuronal network size. Traditionally

n the domain of neuroscience, the most common methods for

imulating neuron models and studying their behavior were either

hrough widely-known mathematical software suites such as

ATLAB [5] or through special neuromodeling tools like NEURON

6] , the NEuronal Simulation Tool (NEST) [7] and Brian [8] . While

hese tools have been used extensively to advance the field of

omputational neuroscience, simulating neuronal networks of

ealistic sizes in high detail remains a challenge; high-performance

omputing (HPC) has been recently recognized as a viable means

or coping with this obstacle [9–14] . 

In this paper we develop a simulator for biophysically plausible

euron models, targeting a part of the human brain called the

nferior Olivary Nucleus, which specializes in the coordination

nd learning of motor function, among other crucial tasks [15] .

he modeling accuracy is at the cell conductance level (as in-

roduced by Hodgkin and Huxley models [16] ), allowing us to

xpose fine details of the neuron mechanisms. The computational
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equirements of this biologically-accurate simulator make it an

xcellent candidate for parallelization on accelerator fabrics, such

s the Intel Xeon Phi processors [17] , due to the large inherent

arallelism of the models. Additionally, it constitutes a realistic

nd challenging scenario in terms of model complexity, due to the

odel’s mathematical stiffness and large number of floating-point

perations required per simulation step, hence a benchmark for

euromodeling workloads. To tackle the computational com-

lexity of the model, we utilize the Xeon Phi Knights Landing

18] , an Intel processor with accelerator elements for massive

omputational power and parallelism potential. It supports tra-

itional parallel-programming paradigms, such as MPI [19] and

penMP [20] , in contrast to Graphics Processing Units (GPU)

equiring platform-specific programming paradigms [21] . The

ardware assets present on the KNL are also found, in a smaller

cale, on Intel Xeon processors commonly found in HPC centers

nd the two families of processors share binary compatibility.

hus, the simulator featured in this body of work is portable to

ther x86-based processors and conclusions derived can act as

 general guideline for a wide class of similar computing plat-

orms. In this sense, the Xeon Phi KNL is treated as an example

latform. 

The paper is organized as follows: in Section 2 , we give an

verview of the neuroscientific landscape and the research tools

vailable today. In Section 3 , we discuss the workings of our HH-

ased simulator, as well as the Phi processor architectural de-

ails. Following this information, we will delineate how the sim-

lator is implemented on the KNL. More specifically, we will elab-

rate on how the simulator smoothly scales network computa-

ion across multiple KNL processors. In Section 4 , we present the

ethodology of our experimentation and evaluate their results,

ollowed by a discussion on system scalability. We explain how

ifferent network configurations affect the computational com-

lexity of the simulation. In Section 5 , we utilize the results of

ection 4 to draw conclusions on the behavior exhibited by our

eveloped system; we also discuss “lessons learnt” from this work

hat can be applied to other workloads of this neuromodeling

lass. Finally, Section 6 contains a concluding overview of the

aper. 

. Related work 

.1. Domain overview 

The different layers of abstraction in human brain studies are

eflected in the usage of multiple models of neuronal functionality,

ith varying degrees of complexity and biochemical detail. Spiking

eural Networks (SNNs) [22] focus on input-current patterns and

pike-transfer delays, attempting to replicate behaviors observed in

heir biological counterparts [23] . Some of the mechanisms exhib-

ted by these models, such as the precise timing and frequency of

heir spiking patterns, are used by neuroscientists to study the hu-

an brain and verify (or reject) hypotheses that are much more

ifficult to recreate via in vitro and in vivo experiments. SNNs can

e divided in two very broad categories known as Integrate and

ire (I&F) and as conductance-based models. 

I&F models are the simplest SNN models, primarily focusing

n receiving a spike input and determining the neuron’s response

ased on a voltage threshold. They are widely used due to their

implicity and extensibility, resulting in a large range of I&F vari-

nts in the literature (e.g. leaky [24,25] , adaptive exponential

26] and quadratic [27] I&F models). Conductance-based models lie

n the opposite side of the spectrum, using complicated differen-

ial equations to represent the contribution of individual ion chan-

els. They offer valuable insight into the electrochemical properties
f the neuron and the machinations of its ion channels, but they

ome at the cost of significant computational complexity and diffi-

ulty in fine-tuning and studying. The Hodgkin and Huxley model

16] , used in this work, can be considered as the most prominent

xample of this class; there is an extensive number of works in the

euroscientific literature that study the functionality and behavior

f the Hodgkin and Huxley model [28–32] . A thorough classifica-

ion of available neuron models and simulators has been made by

rette et al. [22] . 

Despite momentous achievements in the simulation of large

cale neural systems, the path ahead is no less daunting. In the

ast decade, the computational neuroscience literature has seen the

ublication of brain scale models that include numbers of neu-

ons comparable with those of biological systems, or patches of

rain with high level of detail. Izhikevich and Edelman [33] simu-

ated the whole thalamocortical system with quadratic 2D models

nd simple synapses, the Blue Brain Project has simulated detailed

etworks of a whole reconstructed cortical column with compart-

ental models and detailed synaptic models [34] , as well as Erik

e Schutter et al., who produced a highly detailed model of the

erebellar granular layer [35] . Going forward, it is the stated goal

f the human brain project of expanding on the work of the Blue

rain Project and simulating a whole brain. Many other large scale

econstruction and analysis projects should be expected in the fu-

ure, examining both larger neuron populations and more detailed

euron models [36] . 

The projects named above should be taken as isolated ‘proofs

f principle’, and even if the authors have searched parameter

paces, the parameter space of possible networks has barely been

cratched. The goal of computational neuroscience is not only to

imulate a single column or even brain, but enormous classes of

ossible virtual brains. Making matters worse, it is likely that the

uture will demand that these brains be hooked to sensors and ac-

uators and be required to function in real time and closed-loops. 

This type of work pushes multiple boundaries of knowledge

nd technology. On the knowledge front, it commits the computa-

ional neuroscientist to a level of detail of the representation that

xposes the free or unknown parameters of the system. This in-

ludes both the procurement of biological data, and the exploration

f the gigantic parameter spaces. In fact, biological measurements

f neuronal parameters can only take us so far, since neural net-

ork parameter spaces are far from convex [37,38] , hence simply

easuring biophysical properties of neurons will not be sufficient

o recreate plausible neurodynamics. To make matters worse,

iological neurons are in continuous change [39] , and future brain

odels will need to tackle the problem of changeability as well,

ntroducing yet another level of computational demands on the

imulation. 

A caveat of large scale simulations often put forth is that the

orrect level of detail for simulating brains is not known. This

lone should be taken as justification for maintaining an agnostic

iew on the ‘a priori’ required level of detail of the simulation. It

s not inconceivable that future models will continue to biological

etail that is relevant in particular scientific domains, and hence

his agnosticism is commendable. The best means to define that

equired level of detail is in the simulation of large scale systems

nd the comparison with reduced version, to gauge the contri-

ution of the extra amounts of detail. The work of reducing a

odel to its essentials, often passes through understanding the

mplications of more complex assumptions, and hence, to simplify

ne often has to complexify. 

Hence, we should predict that the computational requirements

or future neurocomputational models will demand ever increasing

omputational resources, particularly in the problems of parameter

pace exploration, large network homeostasis and real time em-

edding of brain sized simulations. 
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Table 1 

Prior art. 

Reference Platform Neuron model Network size 

(neurons) 

Network density 

(connections /neuron) 

Simulation speed 

(execution time/s of 

brain activity) 

Hines et al. [40] Supercomputer Intrepid 

BG/P 

I&F 4 mil. 10,0 0 0 47 s 

Kunkel et al. [41] Supercomputer K I&F 1.8 bil. 60 0 0 270 h 

Beyeler et al. [42] GPU Izhikevich 30 0,0 0 0 300 15 s 

Hoang et al. 2013 [43] Multinode GPU Izhikevich 1 mil. 100 1 s 

Sripad et al. 2018 [44] Multi-FPGA Izhikevich 2,0 0 0 10 2 ms 

Ananthanarayanan et al. [4] Supercomputer Dawn BG/P Izhikevich 900 mil. 10,0 0 0 300 s 

Florimbi et al. [45] GPU HH-based 40 0,0 0 0 8 1.33 h 

Nguyen et al. [46] GPU HH-based 1 mil. 8 400 s 

Chatzikonstantis et al. [47] Xeon CPU and Phi KNC HH-based 1 mil. 100 24 min 

Current work Multinode Phi KNL HH-based 2 mil. 10 0 0 10 min 

Table detailing the efforts in the literature to simulate neuronal models of varying complexity in high-performance computing platforms. The Table attempts to extract 

information from the cited studies concerning each work’s best-effort network simulation and respective simulation speed. In order to evaluate performance, execution 

time per second of simulated network activity is reported. The studied neuron model, network configuration and hardware used are also reported. 
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2.2. Neuronal simulation projects 

Accelerators and many-core fabrics are an attractive option for

neuroscientific workloads. One of the most fundamental software

tools in the domain of neuroscience has been NEURON [6] , an

all-purpose neural simulator encompassing most widely-used

neuron models to date [48] . It is still widely used and a pillar for

neuroscientific research [49] . 

There is a number of notable modern neuroscientific simulators

under development that can boast wide usage. Brian is a python-

based lightweight simulator which is favored for its ease of us-

age and simple coding structure, significantly lessening the user’s

programming burden when trying to design an experimental run

[50,51] . NEST [7] is a simulation tool that is designed to run effi-

ciently on a large scale of computing systems and aims at simu-

lating large networks of simpler neuron models [52] . Furthermore,

there is a large number of recent attempts at simulating and visu-

alizing the mechanisms of a designed neuronal network, particu-

larly as parts of Matlab [53] toolboxes [54–56] . In addition to tra-

ditional software methods, a different approach is explored by the

European research project FACETS [57] , where analog neuromor-

phic hardware directly simulates complex neuron models. Other

toolkits, aimed at the development of neuronal models, have been

ported to accelerators. An FPGA toolbox for simulating SNNs in

hardware has been developed by Qingxiang et al. [58] . CARLsim

[42] , on the other hand, is a GPU-oriented library for SNN simula-

tion and model-testing; it is also primarily geared towards robotic

control. 

The domain’s literature details multiple projects that study sim-

ulations of neuronal networks by utilizing various HPC-related

tools. Fidjeland et al. [59] , Ahmadi and Soleimani [60] and Hoang

et al. [43] have successfully deployed densely connected neuronal

networks of Izhikevich [61] neuron models on GPUs. The same

model has been studied by Bhuiyan et al. [62] who use vari-

ous platforms to scale up to millions of neurons, coupled with

few HH neurons in a 2-level neuronal structure for pattern recog-

nition. SNAVA is a multi-FPGA effort to simulate flexible neu-

ronal networks comprised of multiple neuron models [44] . One

of the largest simulation effort s has been carried out by Anantha-

narayanan et al., where neuronal networks reaching the size of a

billion of Izhikevich-model neurons have been simulated on a su-

percomputer [4] using MPI libraries [19] . Hines et al. have also

used a Blue Gene supercomputer to simulate millions of simple

spiking neurons [40] . 

Our work differs from the domain’s existing literature by focus-

ing on complex conductance-based models, contrary to the trend

v  
f focusing on simpler models for large-scale simulations. Further-

ore, its programming is based on the easily-accessible x86 archi-

ecture and refrains from using GPUs or FPGAs; traditional parallel

rogramming tools are easier to deploy than GPU- or FPGA-specific

ethods. In addition, the complexity of the studied models de-

and the superior single-threaded performance that KNL proces-

ors offer compared to GPUs, as well as previous versions of the

imulator ported on the first generation of Xeon Phi Knights Cor-

er [47] . These factors contribute to the development of a portable,

calable, easily maintainable and extendable simulator that at-

empts to expose greater neuronal detail than the literature’s norm.

inally, in this work, we focus on the performance scaling behav-

ors that can be observed for workloads of this class and derive

onclusions that can be beneficial to other projects facing similar

euromodeling challenges. 

This section does not include a full review of all related work

n the literature; an extensive survey is outside the scope of this

aper. However, Table 1 attempts to relay an overview of the land-

cape to the reader by gathering information from the aforemen-

ioned works and reporting their achieved results. The Table also

ncludes our previous and current work. 

. System description 

The simulator described in this paper is written in C language

nd optimized for many-core x86 systems. Specifically, the simu-

ator has been developed for Intel Xeon Phi line of accelerators.

n addition, the micro-optimizations used to boost simulator per-

ormance are also beneficial to other x86 systems. “KNL-exclusive”

ardware assets are configured in a fashion that can be encoun-

ered in other processors as well; for example, we use a special

ow-latency on chip memory called “MCDRAM” as shared last-

evel-cache, which is a commonly found in Intel Xeon processors.

s such, we refrain from limiting our conclusions to the KNL family

f processors and ensure effective portability to other platforms. 

.1. The Inferior Olive (InfOli) model 

The model studied in the current paper is a conductance-based

odel of the Hodgkin–Huxley neuron, modified in order to bet-

er simulate the communication mechanisms of the human inferior

livary nuclei [64,65] . As mentioned in Section 2.1 , conductance-

ased models are more complex models that feature biophysically

ccurate descriptions of the inner workings of each neuron, based

n its biochemical properties. They tend to be very demanding

n computational resources for simulation. For reference, a lighter

ersion of the HH-based model discussed in this paper, featuring
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Fig. 1. Sample spike generation of the inferior olivary nucleus model studied in the present paper [63] . An externally applied electrical pulse ( Iapp , denoted by the light- 

green line in the Figure) stimulates the neuron at t = 10 0 0 ms . The axonal membrane voltage levels ( Va ) are recorded; the reader may observe the generation of an action 

potential, followed by a refractory period and a return to the neuron’s normal oscillation.(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

s  

a  

m

 

t  

i  

i  

d

 

t  

n  

b  

e  

c  

i  

a  

s

 

c  

r  

fl  

d  

F  

v  

o  

fl  

c

3

 

t  

s  

i  

c  

u  

p  

L  

t  

m  

c  

f  

w

 

3  

t  

e  

K  

c  

c  

h  

K  

N

 

d  

c  

c  

s  

l  

t  

c  

o  

d  

r  

t  

a  

m

 

m  

d  

b  

t  

w  

b  

a  

a  

c  

a  

w  

w  

D  

n  

“  

a  

t  

X

ignificantly less complicated inter-neuron communication mech-

nisms, has been ported on NVIDIA GPUs and scaled up to one

illion neurons [46] . 

The inferior olivary region is a small part of the brain linked to

he cerebellum and is theorized to play a crucial role in the learn-

ng of movements and proper motor function. The model approx-

mates the biological neuron with three different compartments:

endrite, soma and axon. 

The dendritic compartment features a set of ordinary differen-

ial equations (ODEs) that simulate current exchange with other

eurons of the inferior olivary network. This exchange happens

etween dendrites that have formed Gap Junctions (GJ), i.e. the

lectrotonic connections or synapses among them. Each dendritic

ompartment forms multiple such electrical synapses, allowing

nter-neuron communication and introducing, for denser networks,

 major source of computational complexity and multiprocessing

ynchronization overhead. 

Most of the neuron ion channels are realized in its somatic

ompartment. These channels are crucial to evaluating the neu-

on’s state in each simulation step. In sparser networks, the

oating-point operations demanded by each somatic compartment

ictates the majority of the simulation’s computational workload.

inally, the axonal compartment is the part of the inferior oli-

ary model that functions as the neuron’s output stage towards

ther parts of the brain, such as the climbing fibers. It features less

oating-point operations than the soma and its simulation is less

omplex than the other compartments of the neuron. 

.2. Xeon Phi Knights Landing 

Intel Xeon Phi Knights Landing is a series of processors fea-

uring an x86-based many-core architecture that specializes in

ervicing demanding HPC applications. The specific Knights Land-

ng processor model examined in the present paper features 64

ores. Each core utilizes two 512-bit-wide vectorization processing

nits (VPUs) which enable AVX-512 instructions for parallel data

rocessing. Furthermore, best practices indicate that each Knights

anding core can support the execution of up to four software

hreads in parallel [67] . These elements combined hint on the

assive potential parallelism present on the processor. As such,

odebases operate best on Knights Landing processors if they

eature high degrees of parallelism, vectorization and ideally,

ell-designed accesses to memory. 
The cores of the KNL processor each have access to a private

2KB L1 cache and pairs of cores have a 1MB L2 cache shared be-

ween the two cores. Via the L2 caches, the tiles are connected to

ach other in a mesh fashion. There are options available to the

NL user concerning the mode of operation followed by the pro-

essor’s cache hierarchy. These options are referred to as “cache

lustering modes”, are configured at boot time and determine

ow the memory address space is distributed across the chip. The

NL features four modes: all-to-all, hemisphere/quadrant and sub-

UMA cluster modes of cache operation. 

In all-to-all clustering mode, memory addresses are uniformly

istributed across all of the tiles’ tag directories. In hemisphere

lustering mode, the 36 tiles of the KNL are divided into two spa-

ial halves called hemispheres, ensuring that messages can be con-

trained within the hemisphere. The quadrant clustering mode fol-

ows the same mentality as the hemisphere but partitions the die’s

iles in four spacial parts instead of two. Finally, the sub-NUMA

luster (SNC) modes are Non-Uniform Memory Access extensions

f the hemisphere and quadrant cache operation modes; they are

ivided in SNC-2 and SNC-4, respectively. In our research, symmet-

ical networks act as well-balanced workloads evenly distributed

hroughout the KNL’s cores. As such, we treat the KNL processor

s a symmetrically-distributed multiprocessor and opt for quadrant

ode of cache operation. 

Another feature of the KNL processor aimed at reducing

emory-access latency is the 16GB multi-channel dynamic ran-

om access memory (MCDRAM). This is an on-package high-

andwidth memory spacially located next to the processing cores

hat can deliver significantly higher (more than 400 GB/s) band-

idth than the chip’s 384 GB DDR4 RAM (approximately 90 GB/s

andwidth). It also comes with three modes of operation chosen

t boot time. When the MCDRAM operates in “flat” mode, it serves

s a high-speed extension of the DDR4 memory. Alternatively, it

an be configured to serve in “cache” mode, where it is treated as

 last-level cache (LLC). Finally, it can be set up in “hybrid” mode

here a pre-determined part of the memory is used in flat mode,

hile the remaining MCDRAM serves as an LLC. We utilize the MC-

RAM entirely in cache mode, since some of the larger neuronal

etworks explored in this paper cannot be allocated on 16GBs of

flat” MCDRAM; additionally, “cache” mode is the most generaliz-

ble configuration for any other type of model we choose to port

o the KNL and it bears resemblance to shared LLCs present in

eon processors. 
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Fig. 2. The Knights Landing die organization [17] . Each tile consists of 2 cores that share an L2 cache. Communication between cores is orchestrated as a mesh, in contrast 

to the previous generation (Knights Corner) which employed bidirectional rings [66] . 
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3.3. Multinode implementation 

The simulator described in this paper has been previously

ported on an Intel Xeon Phi 1st generation coprocessor (Knights

Corner - KNC [66] ) [9] . An advantage of using Intel Xeon Phi

Knights Landing (KNL [17] ) 2nd generation processors as a high-

performance computing fabric over its predecessor, the KNC, as

well as other accelerators, is the ease of employing a multinode

implementation. The Xeon Phi line of products supports traditional

parallel coding paradigms, such as MPI and OpenMP for task-level

parallelism. These tools have been well-studied and are constantly

improved upon, significantly reducing the difficulty and time-to-

market of a scalable, highly-parallel implementation of the simula-

tor’s algorithm. 

3.3.1. Resource partitioning 

As mentioned in Section 3.2 , the KNL processors utilized

in this paper feature 64 cores, each able to dispatch up to 4

instruction streams simultaneously [17] . Thus, when employing

n KNL processors, there is a degree of thread-level parallelism

equal to n × 64 × 4 = n × 256 . In addition, it should be noted that

each thread utilizes, when applicable, the AVX-512 instruction set

which allows for vectorized instructions to operate on multiple

data simultaneously. 

In the case of our simulator, the thread-level computational ca-

pabilities of the ensemble of KNL processors are divided in groups

and assigned to different MPI ranks [19] . An illustration of the

method with which the computational resources of the KNL are

partitioned across the studied neuronal network can be found in

Fig. 3 . Out of the possible MPI-to-OMP ratio configurations, we opt

for 4 MPI ranks spawning 64 OpenMP threads. Fig. 4 shows that

other configurations may have a small advantage performance-

wise for one network setup, but exhibit significantly worse simu-

lation speed in the case of different networks. A 4:64 MPI:OMP ra-
io works reliably well across multiple network configurations. This

iddle-of-the-road approach to the ratio of MPI ranks to OpenMP

hreads coincides with previous decisions on the 1st generation

eon Phi KNC [9,47] . 

.3.2. Algorithmic overview 

On an algorithmic level, OpenMP threads operate on different

arts of the neuronal network. Each neuron in the network is

ssigned to a single thread in order to be processed. Each thread

andles an equal number of neurons, in order for the computa-

ional workload to remain balanced. Each neuron in the network is

onnected to others (except for special cases of zero connectivity)

ia the modeled Gap Junctions. This mechanism necessitates the

sage of MPI collective communication in order to exchange data

etween processors that do not share memory. The amount of

ommunication traffic between MPI ranks, whether on the same

r on different KNL processors, depends on the amount of neurons

n the network and the network’s density, which indicates the

verage number of GJs each neuron has established. 

During the simulation of any given neuronal network, each MPI

ank is responsible for the message-passing needs of its assigned

ub-network, which is processed in parallel by 64 threads. This

rocedure can be divided in two sub-processes: sending and re-

eiving MPI messages. In each simulation step, Gap Junctions need

he dendritic membrane voltage levels of the participating neurons

n the connection in order to be computed. The MPI rank satisfies

he other ranks’ needs by packing the necessary values in a buffer

fter OpenMP thread calculations. The buffer is then distributed

y using MPI’s broadcast function ( MPI_Bcast ). The upper limit for

his data-exchange instance happens when each MPI rank needs to

roadcast voltage values for each neuron they handle. 

After the MPI rank completes its MPI_Bcast function, it receives

he other MPI ranks’ broadcasts. The contents of each received

uffer are processed by spawning 64 OpenMP threads which op-
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Fig. 3. Schematic of the simulator multinode implementation on the Knights Landing. In this example, each KNL processor operates at maximum capacity, meaning all of its 

64 × 4 = 256 threads are employed, while a variable n amount of MPI Ranks are spawned per platform. It should be noted that in our work, we opted for spawning n = 4 

MPI Ranks per KNL platform. A number of i neurons is assigned to each thread in this simulation, totalling a simulated network of l = i × 512 neurons over two KNLs. The 

implementation schema can be extended to include as many KNL machines as necessary and available. 
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Fig. 4. Exploration of KNL’s performance under different configurations of hybrid MPI-OpenMP clustering granularity. Three different networks of varying degrees in neuron 

population size and density are examined for 100 ms of simulated brain time. We alter the amount of MPI ranks spawned on a single KNL processor. Configurations 

employing a small amount of MPI ranks exhibit superior performance. In particular, using 4 MPI ranks spawning 64 OpenMP threads offers good, reliable performance for 

all neuronal networks. 
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rate on the buffer in parallel. In the worst-case scenario of 100%

onnectivity density, each of the 64 threads needs access to the

ull content of the received buffers; in this case, each rank gets

pdated on the entirety of the rest of the network in every simula-

ion step. Following the processing of the received data buffers, the

alculation of Gap Junctions, as well as the neuron compartmental
tates, can be carried out by the threads. Upon completion of these

alculations, the OpenMP threads are joined, thus ensuring that the

etwork state update is complete and ready to be processed in the

ext simulation step, which begins with a new MPI_Bcast function

rom the MPI rank. 
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Uniform Distribu�on Gaussian Distribu�on

Fig. 5. Depiction of two different 7x7 2D neuron-meshes. In each case, the neu- 

ron in the center of the mesh forms 10 connections; the leftmost mesh follows a 

uniform distribution, whereas the rightmost features a Gaussian distribution. Uni- 

form distribution creates spread-out connections, whereas the Gaussian distribution 

keeps the connections closer to their point of origin (i.e. neuron in the center of the 

mesh). 

Table 2 

Parameter space. 

Variable name Value range 

Network size 10 0 0–2,0 0 0,0 0 0 nrns 

Network density 0–10 0 0 syn/nrn 

Synaptic pattern Uniform and Gaussian 

KNL nodes used 1–8 nodes 

Range of explored parameters in this paper. The Table details 

network configurations considered, as well as the amount of 

hardware used during simulation. 
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4. Experimental evaluation 

In order to evaluate the performance of the proposed simula-

tor, we have run a number of experiments in neuronal networks

of widely ranging connectivity patterns, density and size. 

4.1. Experimental setup 

We organize neurons in a 3-dimensional grid. For exploring the

impact of network topology, we explore two different (and natu-

rally occurring) distributions: a uniform distribution of synapses in

the network; and a Gaussian distribution of synapses where neu-

rons in proximate positions on the 3D grid are significantly more

likely to form a bond. The differences of these distributions are vi-

sualized (in a 2D grid, for ease of reference) in Fig. 5 . 

These distributions represent different patterns of connectivity

in the biological brain; neurons may exhibit local synaptic connec-

tivity, as in the case of neocortical pyramidal neurons [68] , while

long-range synaptic patterns can also play an important role in

neuron functionality [69] . Moreover, by exploring different connec-

tivity patterns, it will be evident that synapse distribution affects

performance in a definitive manner. 

Networks are tested on varying degrees of size, as summa-

rized in Table 2 . The smallest networks evaluated are formed of

10 0 0 neuron populations, whereas the largest are comprised of 2

million neurons. For exploring the impact of connectivity density,

various (fixed) amounts of synapses per neuron have been used;

configurations of no-connectivity, 10, 100 and 1000 synapses per

neuron are tested. These particular configuration points match

(and surpass) connectivity as encountered in biological inferior

olivary nucleus and aim at revealing the simulator performance

trends under increasing network density. 

The measurements utilize the standard gettimeofday() C-

function in order to evaluate execution time for the simulation of

the network after it has been set up. In these measurements, input

and output have been restricted to a minimum in order to measure

pure simulation execution time. The experiments simulate 100 ms
f brain time. Since this is a time-driven simulator with a steady,

ncompressible time-step of 50 μ s, brain activity during simulated

rain time is not relevant to the simulator’s performance, in con-

rast to event-driven simulators, whose performance is affected by

euronal spike generation frequency. 

In addition to differing network sizes, connectivity policies as

ell as densities, we perform scalability experiments by employ-

ng multiple KNL nodes (1, 2, 4 and 8), with hardware assets as

escribed in Section 3.2 and configured as in Section 3.3 . A de-

ailed discussion on the scaling behavior of the multi-KNL imple-

entation is thus, also included in this evaluation. 

.2. Performance considerations 

Multinode manycore systems are complicated. Analysis and

attern-detection for a heavy data-exchanging application, such as

 Hodgkin–Huxley-model-based neuron simulator, is a challenge

n such a system. We will first discuss impact factors that heavily

nfluence the simulator’s performance under different workloads

nd configurations. We will, then, discuss our experimental results

ith these factors in mind. 

.2.1. Manycore resource utilization 

There is a price all manycore systems pay for utilizing their re-

ources in parallel. Spawning and joining software threads and/or

asks, via the usage of libraries such as the OpenMP, requires

n amount of preparation and core-time that constitutes a non-

egligible overhead. In addition, unless examining an embarrass-

ngly parallel application, parallelization resources of the many-

ore platform require synchronization at certain “checkpoints” in

he algorithm. Simulations of biological neuronal networks en-

ail exchange of bio-signals, which invariably result in some way

f thread communication when using a manycore system with a

hared memory hierarchy. Increasing the detail and complexity of

he model scales the amount of such bio-signals the application

imulates; as such, the biophysically realistic model studied in this

aper is highly demanding in synchronization when employing a

omplicated, dense neuronal network. 

In addition, contemporary manycore processors feature a

ealth of parallelization resources for threading and vectorizing

ode. The KNL, for instance, by utilizing AVX-512 instructions by all

f its available threads, can potentially execute more than 10,0 0 0

oating-point operations in parallel. This parallelization potential

equires a suitable workload in order to be properly utilized. Since

he simulator’s unit of operation is the single neuron, a network’s

opulation size is bound by a lower limit; simulations under this

ize limit cannot be expected to utilize all of the manycore’s assets,

specially when investigating multinode systems. 

As a result, under-utilization of the platform’s resources can

everely hinder the platform’s performance during a biophysically-

omplex simulation. The manycore processor’s parallelization

ssets go under-used, while still causing overheads of spawn-

ng/joining tasks. Even if the simulation is large enough to feature

igh degrees of asset utilization, stiff models, such as the one

xamined in this paper, enforce data synchronization between

hreads in every simulation step, further reducing the efficiency

ith which the processor’s hardware is employed. In conclusion,

n order to attain acceptable efficiency when using manycore pro-

essors such as the KNL, each of its threads need to be assigned

ith the computation of a suitably large workload. 

.2.2. Message exchange overheads 

MPI-like communication between the nodes in a multinode sys-

em is materialized through Infiniband. This type of communica-

ion poses a significantly heavier overhead than intranode synchro-

ization processes do. As such, locality of data exchange between
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Fig. 6. Special use case of the simulator operating on non-connected networks. The neurons oscillate in a solitary environment. Due to the absence of communication 

between the cores’ assigned subnetworks, this use case can be considered as one of the best cases for parallel processing from a scaling perspective. Utilizing increasing 

amounts of hardware scales simulation speed in an efficient manner; network simulation for 2 million isolated neurons requires execution time that is within the same 

order of magnitude as real time. 
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eurons in the simulator is particularly important. Real neurons

n the brain exchange current (data) by being physically approx-

mate to each other; this translates well for locality in the hard-

are. By partitioning the network in clusters of neurons which are

hysically close to one another, most messages between those neu-

ons stay intra-node, avoiding using MPI functions to other cores or

rocessors. 

As a result, simulations that do not allow for an efficient

artitioning of the network in local sub-clusters will exhibit

ignificantly less scaling potential. When examining different dis-

ributions for the network’s connectivity map, it becomes evident

hat the overhead of inter-node communication is a limiting factor

or utilizing multiple processors if connections are spread out

hroughout the network. These types of networks can be hard to

artition in an effective manner. 

.3. Evaluation results 

In this section we will present the results of the experiments

arried out for this paper and assess the simulator’s performance.

e will analyze the behaviors exhibited in each case by referring

o the factors impacting the manycore processors’ performance, as

entioned in Section 4.2 . 

.3.1. Non-connected networks 

Fig. 6 depicts the special case of networks without the forming

f GJ connections. In these cases, neurons operate in isolation to

ach other in the network. The absence of GJs relaxes communi-

ation needs as it translates to a lack of need for synchronization

etween OpenMP threads and communication between MPI ranks.

urthermore, the special conditions for these types of simulations

ermits the KNL to utilize its low-latency memory assets without

verheads from the MESIF cache coherency protocol. Finally, there

s also a considerable reduction in computational needs since the

rocessor skips the calculation of the GJs in each simulation step,

hich would otherwise take up a major portion of CPU time. 
These factors combined lead to overall low execution times

hich differ from real time by less than two orders of magnitude

ven for populations of 2 million neurons. Each performance curve

n Fig. 6 exhibits similar trends. The initial part of the curve, which

orresponds to low-population networks, is flat, since these sim-

lations are “low-effort” and under-utilize the hardware’s assets.

his trend extends to higher-population networks as more KNL

rocessors are added to the simulator. On the other hand, when

imulating larger neuronal networks, there is a linear increase in

imulation speed as the number of KNL processors used grows.

hese observations are consistent with how an application with

inimal communicational needs should behave. 

.3.2. Uniformly distributed gap junctions 

The uniform distribution of connections in the network, de-

icted in Fig. 7 , is the worst-case scenario for the simulator. In this

ethod of distributing each neuron’s connections over the net-

ork, every neuron pair has a uniformly equal chance of being

reated. When examining a network of n neurons, each forming

 connections, a neuron pair, regardless of its location in the net-

ork, has a probability p = g/n of being formed. Furthermore, if

he network is simulated by c cores, then each core is tasked with

imulating n / c neurons and g × ( n / c ) GJs. Due to the uniform dis-

ribution of these Gap Junctions, the core stores data locally con-

erning only n / c neurons, thus lacking data necessary for the com-

utation of (g − 1) × (n/c) GJs. This scenario causes the simulation

o be very “heavy” on utilizing MPI collective functions for data

xchange. Memory accesses degrade the simulator’s performance

urther, since L1 and L2 caches are unlikely to hold necessary data,

orcing processor’s cores to search in non-local caches. 

This information explains the unsatisfactory performance exhib-

ted by the simulator in Fig. 7 . The application scales poorly, partic-

larly when utilizing 8 processor nodes. Due to the system’s lack of

calability, measurements of only up to 1 million neurons are de-

icted. Larger network populations cannot be simulated effectively,

egardless of the amount of hardware utilized. The performance

urves of 8 KNL nodes in Fig. 7 demonstrates that for larger net-
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Fig. 7. Study of simulated networks following a uniform distribution of Gap Junction bonds. In this scenario, neurons show no preference over which neuron they form a 

bond with, resulting in GJ bonds being uniformly distributed across the entirety of the network. In this fashion, the application’s performance and scalability is hindered 

due to data messages being exchanged between cores, especially between those belonging to different KNL machines. As such, only a small degree of speedup is attained by 

employing two KNL nodes instead of one. Furthermore, no further gains are observed when scaling to more hardware, particularly for heavier workloads. 
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works, execution times show a sharp increase and 8 KNLs perform

worse than a single-node system, rendering the option of adding

further hardware to the system ineffective. 

The application’s performance curves are significantly erratic

and hard to interpret in this distribution case. A critical factor that

determines simulation speed is the overhead of MPI collectives

imposed during inter-node communication, as mentioned before

in Section 4.2.2 ; this factor grows more dominant as the amount

of machines employed during a simulation run increases. For any

experiment consisting of a network of l GJs run on k different KNL

machines, each processor needs to simulate the functionality of l / k

GJ. The processor holds data capable of completing the calculation

of a GJ without inter-node communication for l / k 2 GJs. Thus, the

ratio of “expensive” inter-node communication versus “cheaper”

intra-node data exchange directly correlates to the amount k of

processors used in the case of uniform distributions of neuron

connections. 

In addition, Fig. 7 shows a qualitative difference between

the performance curves of dense networks with 10 0 0 GJs per

neuron versus sparser networks. Dense networks, which exhibit

a naturally heavier workload than sparser networks, depict a

better tendency to benefit from using 2 KNL nodes over opting

for single-node implementation. There is a small, but noticeable

speedup for million-neuron dense networks, which is absent for

similar in size, but sparser in connectivity populations. 

This behavior can be attributed to the fact that in our simulator,

data exchange between MPI ranks takes place with collective com-

munication functions. MPI ranks exchange bundles with relevant

dendritic voltage data concerning their respective subnetworks. In

each simulation step, the MPI rank “builds” the bundle with data

from neurons in its assigned subnetwork. A neuron in said subnet-

work will be added to the bundle as long as there is a single GJ

calculated by another MPI rank which needs this datum. Thus, in

the case of uniform distribution, the probability of a neuron being

added to the bundle grows quickly with the average amount of GJs

formed by each neuron and “caps off” to 100% even for sparsely

connected networks. When this probability reaches 100%, each MPI

c  
ank exchanges all of its subnetwork’s dendritic data in each simu-

ation step. In these cases, the maximum amount of data exchange

etween MPI ranks is achieved and, as explained, these cases are

resent even for networks of sparser density. 

In conclusion, both sparse and dense networks must circulate

arge amounts of GJ-related data through the KNL’s commu-

ication channels, both intra- and inter-node. However, denser

etworks have significantly more operations to perform in order to

alculate GJ states, after acquiring all of the necessary data. These

alculations happen in parallel, thus benefiting from employing

ore hardware and ultimately favour 2-KNL implementations

ver single-node. This benefit is “hidden” when employing more

han 2 nodes due to “heavier” penalties to performance from

ommunication-related overheads. It should be noted, however,

hat the performance curves of both sparse and dense networks

ollow the same trends when moving to 4-KNL simulations and

hat sparser networks show worse degradations in performance

han the heavier experiments. 

.3.3. Gaussian distributions of gap junctions 

The most realistic case of network connectivity, based on how

eal neurons in the inferior olivary region band together to form

ap Junction connections, is evaluated in Fig. 8 , where neuronal

roximity plays an important role in synapse forming according

o a Gaussian distribution. A quick observation of the logarithmic

-axis in the figure reveals that this scenario displays a decrease

n overall execution times by nearly an order of magnitude when

ompared to the worst-case scenario of uniform distribution in

ig. 7 . 

In this use case, a satisfactory amount of locality in message ex-

hange is achieved by clustering neurons according to their coor-

inates in the 3D-mesh. Neurons within a small range of Cartesian

istance are assigned to the same core. According to the Gaussian

istribution, this allows the core to calculate most of its GJs with-

ut referring to external data, since most (but not all) of its neu-

on connections link to other neurons handled locally by the same

ore. Hence, we limit the amount of messages exchanged between
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Fig. 8. Evaluation of the simulator’s performance when computing networks of varying size and density. The network’s connectivity map follows a Gaussian distribution. 

Neurons are imagined in a 3D space and form Gap Junction bonds between them. The likelihood of a neuronal pair forming is based on their proximity in the 3D space. The 

simulator’s performance is evaluated when utilizing 1, 2, 4 and 8 KNL machines. Scalability is boosted by a significant factor due to the greater data locality. For large enough 

workloads, simulation speed increases in an almost linear fashion with the amount of hardware employed. Smaller speedups are attained for sparser, smaller networks. 
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ores intra- and inter-node, as well as reduce memory access la-

ency by maximizing local cache usage. 

Due to the favorable distribution, utilizing a multinode imple-

entation yields positive results. There is a considerable speedup

y adding more Knights Landing processors to the larger simula-

ions. High efficiency is maintained for workloads that approach

he 100k neuron-population mark in the case of dense network

ith 1k synapses per neuron. On the other hand, smaller networks

o not exhibit favorable results when moving from single-node

o multinode implementations. More specifically, Fig. 8 shows

hat there is a clear slowdown when employing 8 KNL nodes for

elatively small networks of 5k neurons or less, when compared

o the single-node’s performance curve. Furthermore, an 8-KNL

mplementation for small and dense networks shows an improve-

ent in execution speed when increasing the neuronal network

ize from 1k to 10k neurons. 

These findings can be attributed to the factors mentioned in

ection 4.2 . When using a group of 8 manycore processors and

pawning a large number of threads per processor, each capable of

xecuting vectorization instructions, underutilization of the hard-

are assets causes considerable overheads that deteriorate perfor-

ance based on how underutilized the processors are. This causes

he simulator to execute larger neuronal networks faster , up to

he point where the hardware’s assets are utilized efficiently. The

oint at which the system’s resources are saturated depend on

he amount of processors used, as well as the network’s density.

enser networks show a clearer, more impactful saturation point,

s shown by comparing the performance curves of 100 versus

k synapses per neuron. Furthermore, saturation is reached ear-

ier when employing less manycore nodes due to less available re-

ources to the system. When examining the performance curves

f the densest network configurations in Fig. 8 (as noted with a

olden yellow line), 2 KNL nodes retain stable execution times un-

il the 5k neurons mark, whereas 8 KNL nodes show a true in-

rease in execution times only past the 50k neurons mark. 

Another point of interest is a super-linear speedup when mov-

ng from a single-node system to a 2-KNL configuration for 2
illion neurons and 2 billion synapses. This behavior can be at-

ributed to an increase of available low-latency assets. When using

dditional nodes of computational fabric, in addition to enhanc-

ng the system’s potential parallel processing power, its total cache

pace (as well as the KNL’s MCDRAM in our particular setup) is

lso expanded. By allowing a larger, if not whole, part of the net-

ork to be allocated in low-latency memory space, super-linear

peedup can be observed in manycore multinode systems. 

The multinode implementation allows the simulation of up to

 million Hodgkin–Huxley-based neurons and 2 billion Gap Junc-

ions for 100 ms within two minutes. As such, even in the case of

he heaviest workload tested in this paper, the simulator exhibits

 simulation speed that differs from real time by two to three

rders of magnitude. In addition, networks of 5k neurons and 500k

ap Junctions, which represent sizable experiments in neurosci-

ntific research, can be simulated in a single node at a rate that

pproaches 30–50% of a real brain’s operational speed. Thus, the

imulator can calculate workloads both light and heavy at satisfac-

ory speeds; the single-node approach is recommended for smaller

orkloads, while multinode implementations are preferred for de-

anding networks. 

. Discussion 

.1. Optimal allocation of resources 

One of the focal points in this paper is the concept of matching

ardware utilization to the workload that requires calculating.

he suggested amount of hardware to deploy for each network

imulation varies according to network size and its corresponding

onnectivity map. By using data collected from the experiments

resented in Section 4.1 , with parameter ranges described in

able 2, Fig. 9 depicts a general guideline for allocating the

inimal KNL instances necessary for achieving the best possible

erformance for workload instance. The Figure exhibits a number

f interesting patterns. 
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Fig. 9. Footprint of suggested implementation for simulated networks of varying sizes and connectivities. The colourmaps depict the amount of processors providing the best 

simulation speed for networks of uniform (panel a ) and Gaussian (panel b ) synaptic patterns. As derived from Section 4.3 , single-node implementations dominate networks 

with uniform synaptic distributions due to poor scalability. In contrast, the case of Gaussian synaptic distributions varies with network density: highly dense networks 

require the maximal number of KNL nodes, whereas lower densities can be tackled with less nodes. 
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Fig. 9 a depicts suggestions for networks with uniformly dis-

tributed connection patterns. We observe that: 

• Uniformly-distributed connectivity maps force the simulator

to become completely communication-bound, due to model

complexity. 

These types of network benefit mildly from 2-node implemen-

tations, while employing more hardware often yields no improve-

ment. Fig. 9 shows that only networks with populations larger

than 50 0,0 0 0 neurons and connectivity patterns denser than 100

synapses per neuron (thus, totalling more than 50 million synapses

in the network) have an optimal configuration point of 2 to 4 pro-

cessor nodes. In other cases, single-node implementations are rec-

ommended due to poor scalability. 

Fig. 9 b maps networks with connection patterns following

a Gaussian distribution . We come to the following general

conclusions: 

• The notion that neighboring neurons are more likely to

form bonds leads to significantly more scalable network

configurations. 

Connectivity maps based on the Gaussian distribution expose

data locality better and support utilizing multiple KNL nodes.

Fig. 9 shows multiple network configuration points where the

maximal tested amount of processors is optimal for simulation

speed. In this paper, up to 8 KNL processor nodes have been em-

ployed due to availability (as noted in Table 2 ); a larger amount of

processors may yield further boosts to simulation speed. 

Furthermore, network density directly correlates to the preva-

lence of cases where multinode allocations are recommended. For

example, in Fig. 9 b, networks featuring 10 synapses per neuron
re suited for single-node solutions when population count is less

han 10 0,0 0 0 neurons. On the other hand, when network density

pproaches 10 0 0 synapes per neuron, network sizes of more than

0,0 0 0 neurons merit multinode configurations. This behavior can

e attributed to the fact that network density affects the amount of

oating-point instructions issued per simulation step; by increas-

ng network density, the computational workload becomes heavier

nd thus, can be calculated more effectively by employing larger

mounts of computational resources. 

Both panels in Fig. 9 show that: 

• When network sizes are large while network synaptic count is

low, the neuromodeling problem becomes an embarrassingly

parallel use case and utilizing a high amount of processors is

recommended. 

• Small, dense networks benefit from single-node allocations,

otherwise computational resources are effectively wasted and

simulator performance suffers. 

Networks featuring low synaptic connectivity maps behave in a

imilar fashion, since there is negligible communication overhead

or the simulator. In both panels of Fig. 9 , multi-node configura-

ions are encouraged when simulating less than 10 synapses per

euron in the network. This claim is challenged, to a degree, when

imulating very high population counts (more than 50 0,0 0 0 neu-

ons), since even a small amount of synapses per neuron can im-

ose a non-trivial communication overhead. 

.2. Simulator sensitivity to workload parameters 

It is clear that fully understanding the performance patterns

xhibited by a biologically-accurate multinode simulator is not a
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rivial task. The simulator presented in this paper works on x86-

ased processors, which are very well-documented and have been

xtensively studied. Furthermore, in this paper, the parameter

pace we explored relates to network size, density and connec-

ivity distribution, as described in Table 2 . In this strictly-defined

arameter space, the simulator behavior, as depicted in Figs. 6 –9 ,

learly shows that even small changes to its parameters can have

 large impact on performance. Furthermore, this phenomenon is

xacerbated by increasing the amount of available computational

esources. 

Since predicting simulator behavior in any given parameter

pace is hard, one is encouraged to create maps similar to the

ne featured in Fig. 9 , in order to discern emerging trends. Such

aps aid in choosing simulator configuration for future research

n related areas. This map generation process can be efficiently

eployed in a Cloud setting. Cloud services lend themselves to

erforming parameter-space explorations by offering processing

esources that can be otherwise difficult to access [70,71] . In

ddition, the resources can be scaled to match problem size in a

ost-efficient manner. 

Furthermore, when mapping simulator behavior, one is encour-

ged to increase the scope of parameter exploration as much as

esource availability allows. In this manner, the generated map is

ore effective at conveying hints related to simulator behavior

rends. As an example, panel a of Fig. 9 partially resembles the im-

ge that panel b depicts for networks of 10 0 0–20,0 0 0 neurons. It is

ossible that by further increasing the network size, trends that are

lready visible for Gaussian-distributed connectivity maps become

anifest in uniformly-distributed maps as well. This could be at-

ributed to the fact that uniformly-distributed networks face larger

nter-node communication penalties; as such, they would require

omputing heavier workloads before additional computational re-

ources prove to be beneficial. 

A fundamental problem with extending parameter size is that

eavier workloads demand larger execution times to be calculated.

his, in turn, implies longer simulation times for evaluating opti-

al simulator configurations (here: number of nodes). Given that,

or this type of cycle-accurate models, simulator behavior remains

argely stable after a small amount of warm-up steps is performed.

hus, it can be beneficial to reduce the amount of simulation steps

nd increase the range of parameters explored. 

. Conclusion 

This paper has discussed the performance and scalability of a

omputationally complex and biologically accurate neuron simula-

or on the Intel Xeon Phi Knights Landing processors. The simu-

ator has been designed with a broader manycore architecture in

ind, since the KNL hardware assets are found on most x86-based

anycore processors [72] and the simulator was written using tra-

itional parallelization techniques of OpenMP and MPI. This ap-

roach allows the portability of the simulator and the extraction of

eaningful insight concerning the behavior of similar workloads. 

The work proves that efficient usage of a small cluster of many-

ore processors, such as a system of 8 Knights Landing Xeon Phis,

s able to achieve satisfactory performance even when facing a very

emanding mathematical model of the human neuron, in network

nd synaptic sizes numbering in the millions and billions, respec-

ively. It constitutes an efficient solution for studying demanding

euronal models in a pursuit of attaining deeper understanding of

he human brain’s intricate details. 

Furthermore, it has been demonstrated that a biologically-

ccurate simulator exhibits performance patterns that are dictated

y problem size and the nature of each network’s connectivity

ap. A point of focus particularly in our analysis was the system’s

calability in multinode setups. It has been highlighted that the
ystem is highly sensitive to simulation parameters and as such,

areful steps need to be taken in order to discern trends in perfor-

ance behavior. 

cknowledgments 

This research is supported by European Commission project

2020-687628-VINEYARD . The work is also partially supported by

 machine allocation on Kabré supercomputer at the Costa Rica Na-

ional High Technology Center. 

eferences 

[1] H. Markram , The human brain project, Sci. Am. 306 (6) (2012) 50–55 . 
[2] T.R. Insel , S.C. Landis , F.S. Collins , The NIH brain initiative, Science 340 (6133)

(2013) 6 87–6 88 . 

[3] H. Okano , E. Sasaki , T. Yamamori , A. Iriki , T. Shimogori , Y. Yamaguchi , K. Ka-
sai , A. Miyawaki , Brain/minds: a japanese national brain project for marmoset

neuroscience, Neuron 92 (3) (2016) 582–590 . 
[4] R. Ananthanarayanan , S.K. Esser , H.D. Simon , D.S. Modha , The cat is out of

the bag: cortical simulations with 109 neurons, 1013 synapses, in: Proceed-
ings of the Conference on High Performance Computing Networking, Storage

and Analysis, 2009 . 

[5] P. Wallisch , M.E. Lusignan , M.D. Benayoun , T.I. Baker , A.S. Dickey , N.G. Hat-
sopoulos , MATLAB for Neuroscientists: An Introduction to Scientific Computing

in MATLAB, Academic Press, 2014 . 
[6] M.L. Hines, N.T. Carnevale, The neuron simulation environment, Neural Com-

put. 9 (6) (1997) 1179–1209, doi: 10.1162/neco.1997.9.6.1179 . 
[7] H.E. Plesser , et al. , Nest: the neural simulation tool, Enc. Comp. Neurosci.

(2015) 1849–1852 . 
[8] D.F. Goodman , R. Brette , The brian simulator, Front. Neurosci. 3 (2009)

192–197 . 

[9] G. Chatzikonstantis, D. Rodopoulos, S. Nomikou, C. Strydis, C.I. De Zeeuw,
D. Soudris, First impressions from detailed brain model simulations on a

Xeon/Xeon-Phi node, in: Proceedings of the ACM International Conference on
Computing Frontiers, in: CF ’16, ACM, New York, NY, USA, 2016, pp. 361–364,

doi: 10.1145/2903150.2903477 . 
[10] H.D. Nguyen , Z. Al-Ars , G. Smaragdos , C. Strydis , Accelerating complex brain–

model simulations on GPU platforms, in: Proceedings of the Design, Automa-

tion, and Test in Europe, DATE, 2015 . 
[11] G. Smaragdos , S. Isaza , M.V. Eijk , I. Sourdis , C. Strydis , FPGA-based biophysi-

cally-meaningful modeling of olivocerebellar neurons, in: Proceedings of the
22nd ACM/SIGDA International Symposium on Field-Programmable Gate Ar-

rays (FPGA), 2014 . 
[12] B. Glackin , J.A. Wall , T.M. McGinnity , L.P. Maguire , L. McDaid , A spiking neu-

ral network model of the medial superior olive using spike timing dependent

plasticity for sound localization, Front. Comput. Neurosci. 4 (18) (2010) . 
[13] M. Bhuiyan, A. Nallamuthu, M. Smith, V. Pallipuram, Optimization and perfor-

mance study of large-scale biological networks for reconfigurable computing,
in: Proceedings of the Fourth International Workshop on High-Performance

Reconfigurable Computing Technology and Applications (HPRCTA), 2010, pp. 1–
9, doi: 10.1109/HPRCTA.2010.5670796 . 

[14] T. Yamazaki, J. Igarashi, Realtime cerebellum: a large-scale spiking network

model of the cerebellum that runs in realtime using a graphics process-
ing unit, Neural Netw. 47 (2013) 103–111 Computation in the Cerebellum,

doi: 10.1016/j.neunet.2013.01.019 . 
[15] C.I. De Zeeuw , et al. , Microcircuitry and function of the inferior olive, Trends

Neurosci. 21 (9) (1998) 391–400 . 
[16] A .L. Hodgkin , A .F. Huxley , Propagation of electrical signals along giant nerve

fibres, Proc. R. Soc. Lond. Ser. B Biol. Sci. 140 (899) (1952) 177–183 . 

[17] J. Jeffers , J. Reinders , A. Sodani , Intel Xeon Phi Processor High Performance Pro-
gramming: Knights Landing Edition, Morgan Kaufmann, 2016 . 

[18] A. Sodani , R. Gramunt , J. Corbal , H.-S. Kim , K. Vinod , S. Chinthamani , S. Hut-
sell , R. Agarwal , Y.-C. Liu , Knights landing: Second-generation intel xeon phi

product, IEEE Micro 36 (2) (2016) 34–46 . 
[19] M. Snir , MPI–the Complete Reference: The MPI core, MIT, 1998 . 

20] L. Dagum, R. Menon, Openmp: an industry standard api for shared-memory

programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55, doi: 10.1109/99.
660313 . 

[21] D. Luebke, Cuda: Scalable parallel programming for high-performance scien-
tific computing, in: Proceedings of the 5th IEEE International Symposium on

Biomedical Imaging: From Nano to Macro, 2008, pp. 836–838, doi: 10.1109/ISBI.
2008.4541126 . 

22] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Dies-
mann, A. Morrison, P.H. Goodman, F.C. Harris, et al., Simulation of networks of

spiking neurons: a review of tools and strategies, J. Comput. Neurosci. 23 (3)

(2007) 349–398, doi: 10.1007/s10827- 007- 0038- 6 . 
23] S. Ghosh-Dastidar , H. Adeli , Spiking neural networks, Int. J. Neural Syst. 19 (04)

(2009) 295–308 . 
[24] Y.-H. Liu , X.-J. Wang , Spike-frequency adaptation of a generalized leaky inte-

grate-and-fire model neuron, J. Comp. Neurosci. 10 (1) (2001) 25–45 . 

https://doi.org/10.13039/501100000780
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0005
https://doi.org/10.1162/neco.1997.9.6.1179
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0008
https://doi.org/10.1145/2903150.2903477
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0012
https://doi.org/10.1109/HPRCTA.2010.5670796
https://doi.org/10.1016/j.neunet.2013.01.019
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0019
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1007/s10827-007-0038-6
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0024


382 G. Chatzikonstantis, H. Sidiropoulos and C. Strydis et al. / Neurocomputing 329 (2019) 370–383 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[25] M.J. Chacron, et al., Interspike interval correlations, memory, adaptation, and
refractoriness in a leaky integrate-and-fire model with threshold fatigue, Neu-

ral Comput. (2003) 253–278, doi: 10.1162/089976603762552915 . 
[26] R. Brette , W. Gerstner , Adaptive exponential integrate-and-fire model as an

effective description of neuronal activity, J. Neurophysiol. 94 (5) (2005)
3637–3642 . 

[27] E. Shlizerman , P. Holmes , Neural dynamics, bifurcations, and firing rates in a
quadratic integrate-and-fire model with a recovery variable. i: deterministic

behavior, Neural Comput. 24 (8) (2012) 2078–2118 . 

[28] X. Sun , M. Perc , Q. Lu , J. Kurths , Spatial coherence resonance on diffusive and
small-world networks of Hodgkin–Huxley neurons, Chaos Interdiscip. J. Non-

linear Sci. 18 (2) (2008) 023102 . 
[29] Q. Wang , M. Perc , Z. Duan , G. Chen , Delay-enhanced coherence of spiral waves

in noisy Hodgkin–Huxley neuronal networks, Phys. Lett. A 372 (35) (2008)
56 81–56 87 . 

[30] M. Ozer , M. Perc , M. Uzuntarla , Controlling the spontaneous spiking regularity

via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons,
EPL Europhys. Lett. 86 (4) (20 09) 40 0 08 . 

[31] M. Ozer , M. Perc , M. Uzuntarla , Stochastic resonance on Newman–Watts net-
works of Hodgkin–Huxley neurons with local periodic driving, Phys. Lett. A

373 (10) (2009) 964–968 . 
[32] M. Ozer , M. Uzuntarla , M. Perc , L.J. Graham , Spike latency and jitter of neu-

ronal membrane patches with stochastic Hodgkin–Huxley channels, J. Theor.

Biol. 261 (1) (2009) 83–92 . 
[33] E.M. Izhikevich , G.M. Edelman , Large-scale model of mammalian thalamocorti-

cal systems, Proc. Nat. Acad. Sci. 105 (9) (2008) 3593–3598 . 
[34] H. Markram , E. Muller , S. Ramaswamy , M.W. Reimann , M. Abdellah ,

C.A . Sanchez , A . Ailamaki , L. Alonso-Nanclares , N. Antille , S. Arsever , et al. , Re-
construction and simulation of neocortical microcircuitry, Cell 163 (2) (2015)

456–492 . 

[35] S.K. Sudhakar , S. Hong , I. Raikov , R. Publio , C. Lang , T. Close , D. Guo , M. Ne-
grello , E. De Schutter , Spatiotemporal network coding of physiological mossy

fiber inputs by the cerebellar granular layer, PLoS Comput. Biol. 13 (9) (2017)
e1005754 . 

[36] C. Eliasmith , O. Trujillo , The use and abuse of large-scale brain models, Current
Opin. Neurobiol. 25 (2014) 1–6 . 

[37] J. Golowasch , M.S. Goldman , L. Abbott , E. Marder , Failure of averaging in the

construction of a conductance-based neuron model, J. Neurophysiol. 87 (2)
(2002) 1129–1131 . 

[38] A .A . Prinz , D. Bucher , E. Marder , Similar network activity from disparate circuit
parameters, Nat. Neurosci. 7 (12) (2004) 1345 . 

[39] E. Marder , J.-M. Goaillard , Variability, compensation and homeostasis in neu-
ron and network function, Nat. Rev. Neurosci. 7 (7) (2006) 563 . 

[40] M. Hines , S. Kumar , F. Schürmann , Comparison of neuronal spike exchange

methods on a blue gene/p supercomputer, Front. Comput. Neurosci. 5 (2011)
1–15 . 

[41] S. Kunkel, M. Schmidt, J.M. Eppler, H.E. Plesser, G. Masumoto, J. Igarashi,
S. Ishii, T. Fukai, A. Morrison, M. Diesmann, M. Helias, Spiking network sim-

ulation code for petascale computers, Front. Neuroinform. 8 (2014) 78, doi: 10.
3389/fninf.2014.0 0 078 . 

[42] M. Beyeler , et al. , Carlsim 3: a user-friendly and highly optimized library for
the creation of neurobiologically detailed spiking neural networks, in: Proceed-

ings of the IJCNN, 2015, pp. 1–8 . 

[43] R.V. Hoang , D. Tanna , L.C. Jayet Bray , S.M. Dascalu , F.C. Harris Jr , A novel
cpu/gpu simulation environment for large-scale biologically realistic neural

modeling, Front. Neuroinform. 7 (2013) 1–10 . 
[44] A. Sripad , G. Sanchez , M. Zapata , V. Pirrone , T. Dorta , S. Cambria , A. Marti ,

K. Krishnamourthy , J. Madrenas , Snava-a real-time multi-fpga multi-model
spiking neural network simulation architecture, Neural Netw. 97 (2018) 28–45 .

[45] G. Florimbi , E. Torti , S. Masoli , E. D’Angelo , G. Danese , F. Leporati , The human

brain project: parallel technologies for biologically accurate simulation of gran-
ule cells, Microprocessors Microsyst. 47 (2016) 303–313 . 

[46] H.A.Du Nguyen , et al. , Accelerating complex brain-model simulations on gpu
platforms, in: Proceedings of the DATE, 2015, pp. 974–979 . 

[47] G. Chatzikonstantis , D. Rodopoulos , C. Strydis , C.I. De Zeeuw , D. Soudris , Op-
timizing extended hodgkin-huxley neuron model simulations for a xeon/xeon

phi node, IEEE Trans. Parallel Distrib. Syst. 28 (9) (2017) 2581–2594 . 

[48] W.W. Lytton , A.H. Seidenstein , S. Dura-Bernal , R.A. McDougal , F. Schürmann ,
M.L. Hines , Simulation neurotechnologies for advancing brain research: paral-

lelizing large networks in neuron, Neural Comput. 28 (10) (2016) 2063–2090 . 
[49] M.J. Bezaire, I. Raikov, K. Burk, D. Vyas, I. Soltesz, Interneuronal mechanisms of

hippocampal theta oscillation in a full-scale model of the rodent ca1 circuit,
eLife (2016), doi: 10.7554/eLife.18566 . 

[50] D.F. Goodman , R. Brette , Brian: a simulator for spiking neural networks in

python, Front. Neuroinform. 2 (2008) 1–10 . 
[51] M. Stimberg , D.F. Goodman , R. Brette , M. De Pittà, Modeling neuron-glia inter-

actions with the brian 2 simulator, bioRxiv (2017) 198366 . 
[52] S. Kunkel , W. Schenck , The nest dry-run mode: Efficient dynamic analysis of

neuronal network simulation code, Front. Neuroinform. 11 (2017) 1–15 . 
[53] H. Demuth , M. Beale , MATLAB: The Language of Technical Computing; Neural

Network Toolbox; User’s Guide; Version 3, MathWorks, 1998 . 
[54] J.S. Sherfey , A.E. Soplata , S. Ardid , E.A. Roberts , D.A. Stanley , B.R. Pittman-Pol-
letta , N.J. Kopell , Dynasim: a matlab toolbox for neural modeling and simula-

tion, Front. Neuroinform. 12 (2018) 1–15 . 
[55] J. Senk, C. Carde, E. Hagen, T.W. Kuhlen, M. Diesmann, B. Weyers, VIOLA - A

multi-purpose and web-based visualization tool for neuronal-network simula-
tion output, arXiv preprint arXiv:1803.10205 (2018). 

[56] S.G. Aleksin , K. Zheng , D.A. Rusakov , L.P. Savtchenko , Arachne: A neural-neu-
roglial network builder with remotely controlled parallel computing, PLoS

Comput. Biol. 13 (3) (2017) e1005467 . 

[57] J. Schemmel , et al. , A wafer-scale neuromorphic hardware system for large-s-
cale neural modeling, in: Proceedings of the IEEE ISCAS, 2010 . 

[58] Q. Wu , et al. , Development of fpga toolbox for implementation of spiking neu-
ral networks, in: Proceedings of the CSNT, 2015, pp. 806–810 . 

[59] A.K. Fidjeland , et al. , Nemo: a platform for neural modelling of spiking neurons
using gpus, in: Proceedings of the IEEE ASAP, 2009, pp. 137–144 . 

[60] A. Ahmadi , H. Soleimani , A gpu based simulation of multilayer spiking neural

networks, in: Proceedings of the 19th Iranian Conference on Electrical Engi-
neering (ICEE), IEEE, 2011, pp. 1–5 . 

[61] E.M. Izhikevich , et al. , Simple model of spiking neurons, IEEE Trans. Neural
Netw. 14 (6) (2003) 1569–1572 . 

[62] M. Bhuiyan , et al. , Acceleration of spiking neural networks in emerging multi-
-core and gpu architectures, in: Proceedings of the IPDPSW, 2010 . 

[63] G. Smaragdos, S. Isaza, M.F. van Eijk, I. Sourdis, C. Strydis, Fpga-based

biophysically-meaningful modeling of olivocerebellar neurons, in: Proceedings
of the ACM/SIGDA International Symposium on Field-programmable Gate Ar-

rays, in: FPGA ’14, ACM, New York, NY, USA, 2014, pp. 89–98, doi: 10.1145/
2554688.2554790 . 

[64] C.I. De Zeeuw , C.C. Hoogenraad , S. Koekkoek , T.J. Ruigrok , N. Galjart , J.I. Simp-
son , Microcircuitry and function of the inferior olive, Trends Neurosci. 21 (9)

(1998) 391–400 . 

[65] J.R. De Gruijl , P. Bazzigaluppi , M.T. de Jeu , C.I. De Zeeuw , Climbing fiber burst
size and olivary sub-threshold oscillations in a network setting, PLoS Comput.

Biol. 8 (12) (2012) e1002814 . 
[66] J. Jeffers , J. Reinders , Intel Xeon Phi Coprocessor High-Performance Program-

ming, Elsevier, 2013 . 
[67] A. Sodani , Knights landing (knl): 2nd generation Intel® Xeon Phi processor, in:

Proceedings of the Hot Chips 27 Symposium (HCS), IEEE, 2015, pp. 1–24 . 

[68] B. Hellwig , A quantitative analysis of the local connectivity between pyrami-
dal neurons in layers 2/3 of the rat visual cortex, Biol. Cybern. 82 (2) (20 0 0)

111–121 . 
[69] V. Senn , S.B. Wolff, C. Herry , F. Grenier , I. Ehrlich , J. Gründemann , J.P. Fadok ,

C. Müller , J.J. Letzkus , A. Lüthi , Long-range connectivity defines behavioral
specificity of amygdala neurons, Neuron 81 (2) (2014) 428–437 . 

[70] K.R. Jackson , K. Muriki , L. Ramakrishnan , K.J. Runge , R.C. Thomas , Performance

and cost analysis of the supernova factory on the amazon aws cloud, Sci. Prog.
19 (2–3) (2011) 107–119 . 

[71] Y. Shao , L. Di , Y. Bai , B. Guo , J. Gong , Geoprocessing on the amazon cloud com-
puting platform - aws, in: Proceedings of the First International Conference on

Agro-Geoinformatics (Agro-Geoinformatics), IEEE, 2012, pp. 1–6 . 
[72] J. Jeffers , J. Reinders , High Performance Parallelism Pearls Volume Two: Multi-

core and Many-core Programming Approaches, Morgan Kaufmann, 2015 . 

George Chatzikonstantis obtained his Diploma in Elec-

trical and Computer Engineering from the National Tech-

nical University of Athens (NTUA) in 2013. His research
interests focus on highperformance computing, multi-

core/single-chip multiprocessors and bioinformatics. He is
currently conducting research on neuromodeling applica-

tions in high-performance computing fabrics as a Ph.D.
student in NTUA. 

Harry Sidiropoulos graduated from the School of Electri-
cal and Computer Engineering from the National Techni-

cal University of Athens in 2010. He then completed his
Ph.D. studies on the topic of FPGA Architecture and Tool

Suites, in the Microprocessors and Digital Systems Labo-
ratory of NTUA. He has been working as a post-doctoral

researcher since 2016, specializing in algorithm optimiza-

tion, ongoing FPGA architectural challenges, cloud com-
puting and computational neuroscience. 

https://doi.org/10.1162/089976603762552915
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0040
https://doi.org/10.3389/fninf.2014.00078
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0045
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0046
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0046
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0046
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0048
https://doi.org/10.7554/eLife.18566
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0050
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0050
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0050
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0052
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0052
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0052
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0053
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0053
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0053
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0054
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0055
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0055
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0055
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0055
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0055
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0056
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0056
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0056
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0057
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0057
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0057
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0058
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0058
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0058
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0059
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0059
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0059
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0060
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0060
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0060
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0061
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0061
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0061
https://doi.org/10.1145/2554688.2554790
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0063
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0064
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0064
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0064
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0064
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0064
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0065
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0065
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0065
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0066
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0066
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0067
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0067
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0068
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0069
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0069
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0069
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0069
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0069
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0069
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0070
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0070
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0070
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0070
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0070
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0070
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0071
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0071
http://refhub.elsevier.com/S0925-2312(18)31290-6/sbref0071


G. Chatzikonstantis, H. Sidiropoulos and C. Strydis et al. / Neurocomputing 329 (2019) 370–383 383 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Christos Strydis obtained his Ph.D. Degree in Computer

Engineering from the Delft University of Technology in
2011. His interests revolve around the topics of high-

performance computational neuroscience and of nextgen- 

eration implantable medical devices. Currently, he is an
assistant professor with the Neuroscience department of

the Erasmus Medical Center, the Netherlands, and is also
a chief engineer with Neurasmus BV, the Netherlands. 

Mario Negrello obtained a mechanical engineering de-

gree in Brazil in 1997 and later served in the industry of
VW until 2004. He then obtained his Masters degree in

2006 and Ph.D. (summa cum laude) in Cognitive Science

at the University of Osnabrück, Germany in 2009. At the
Fraunhofer Institute in Sankt Augustin of Germany, he re-

searched artificial evolution of neural network controllers
for autonomous robots. He acted as a group leader at the

Computational Neuroscience laboratory in Okinawa Insti- 
tute of Science and Technology and now leads a neuro-

science lab that combines empirical research with com-

putational method in Erasmus MC, Rotterdam. 

George Smaragdos obtained his Diploma from the Tech-

nical University of Crete in the department of Electron-
ics and Computer Engineering in 2008. He was then ad-

mitted to Delft University of Technology, Netherlands and

obtained his M.Sc. in 2012. His master thesis presented
an “Adaptive Defect-Tolerant Multiprocessor Array Archi- 

tecture”. He now conducts research on reconfigurable
hardware, computer architecture, fault-tolerant comput- 

ing, scientific computing and embedded systems. 
Chris I. De Zeeuw received his Ph.D. with a focus in brain

and behavior in 1990 and his MD in 1991 from Erasmus
University Rotterdam. He focuses on the nerve cells in the

cerebellum responsible for learning and the effect of their

electrical activity on movement. He is currently the direc-
tor of Neurasmus BV, the Chairman of the Department of

Neuroscience at Erasmus MC Rotterdam and the Project
Director at the Netherlands Institute for Neuroscience in

Amsterdam. 

Dimitrios Soudris received his Ph.D. Degree in Electri-
cal Engineering from the University of Patras in 1992. His

research interests include embedded systems design, re-

configurable architectures, reliability and low power VLSI
design. He is currently working as Associate Professor

in School of Electrical and Computer Engineering, Dept.
Computer Science of NTUA, Greece. 


	Multinode implementation of an extended Hodgkin-Huxley simulator
	1 Introduction
	2 Related work
	2.1 Domain overview
	2.2 Neuronal simulation projects

	3 System description
	3.1 The Inferior Olive (InfOli) model
	3.2 Xeon Phi Knights Landing
	3.3 Multinode implementation
	3.3.1 Resource partitioning
	3.3.2 Algorithmic overview


	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Performance considerations
	4.2.1 Manycore resource utilization
	4.2.2 Message exchange overheads

	4.3 Evaluation results
	4.3.1 Non-connected networks
	4.3.2 Uniformly distributed gap junctions
	4.3.3 Gaussian distributions of gap junctions


	5 Discussion
	5.1 Optimal allocation of resources
	5.2 Simulator sensitivity to workload parameters

	6 Conclusion
	Acknowledgments
	References


