

Smart Implantable Medical Systems
The SiMS Project

ImpBench Suite v1.1 – Release Notes
Christos Strydis, Computer Engineering Laboratory, Delft University of Technology

Computer Engineering Laboratory
Electrical Engineering, Mathematics & Computer Science Faculty

Delft University of Technology

http://ce.et.tudelft.nl/SiMS
http://ce.et.tudelft.nl/

IMPBENCH SUITE V1.1 – RELEASE NOTES

2 / 13

DISCLAIMER

The ImpBench Suite has been developed with the explicit aim of providing the widest possible audience with access to the scientific and
technological resources it entails.

We have made every reasonable effort to preserve and abide by the intellectual-property rights of the respective holders of all included parts.
In some cases this may not be possible because one or more entitled parties or heirs cannot be traced.

Persons or institutions who wish to exercise potential rights to parts of the published ImpBench Suite should contact us
(www.erasmusbrainproject.com), specifying the related material. In such cases, the representatives of the SiMS project may have to amend
or even remove the material in question.

The ImpBench Suite is designed for educational and other non-profit purposes. No payment is made or received for material submitted or
referenced in the ImpBench Suite. We accept no responsibility for improper use of the ImpBench Suite, or for rights or claims deriving from
its use.

http://www.erasmusbrainproject.com/

IMPBENCH SUITE V1.1 – RELEASE NOTES

3 / 13

REVISION HISTORY

Version: Status: Details: Author: Date:

v1.0 Online Initial release of ImpBench suite. C. Strydis 21-02-2008

v1.1 Online Updated release of ImpBench suite, with new contact info and minor fixes C. Strydis 01-08-2014

IMPBENCH SUITE V1.1 – RELEASE NOTES

4 / 13

OVERVIEW
ImpBench is a novel benchmark suite meant for designing and evaluating new digital processors for microelectronic implants. In an
application field as wide as the various pathoses of the human body, we have conceptualized this suite based on common-sense and market-
driven indicators, and we have established its usefulness and uniqueness based on extensive experimental measurement. In its first stable
version 1.0, the suite consists of eight carefully selected programs, chosen on the basis of popularity among contemporary and emerging
implant applications.

A plethora of benchmark suites has been proposed so far for characterizing a variety of application domains. Of late, workload-
characterization programs more suited to the embedded domain have begun spurting in an attempt to better capture the particular
characteristics of embedded processors. A special category of embedded systems with particular design constraints is implantable,
microelectronic devices. Since their birth, such devices have been traditionally designed in custom style, always attempting to squeeze the
desired functionality in an extremely limited size and with the maximum possible safety.

With the advent of mature microelectronics and micromachining technologies as well as more sophisticated computer-architecture and
compiler design, this trend has began to change. Continuously more implant designers are willing (and free) to move to software running
implant architectures to achieve their goals. In view of more structured and educated implant processors in the years to come, we have
carefully put together ImpBench, a collection of benchmark programs and assorted input datasets, able to capture the intrinsic details of new
architectures under evaluation. ImpBench has been shown [9] to display considerably different characteristics than other related benchmark
collections, justifying introducing an utterly new benchmark suite.

ImpBench is a dynamic construct and, in the future, more benchmarks will be added, subject to our ongoing research. Among others, we
anticipate simple DSP applications as potential candidates as well as more “real applications” like the ones we already included.

IMPBENCH STRUCTURE
Although ImpBench is expected to be a continuously evolving and updated tool, still we are confident that we have correctly identified a
common subset of programs essential for all current and future implantable systems. To draw a clear structure of our proposed benchmark
programs, we have grouped them in four distinct categories of two programs each:

 Lossless data compression: miniLZO, Finnish.

 Symmetric-key encryption: MISTY1, RC6.

 Data-integrity: CHECKSUM, CRC32.

 Real applications (a.k.a. synthetic programs): motion, DMU.

Selection of the specific two pairs of compression and encryption algorithms, above, has been based on related works [11], [12] investigating
suitable algorithms for highly resource-constrained embedded systems. As explained in those works, lossless as opposed to lossy compression
algorithms have been included since information deterioration is not an option for implant applications, in the general case.

Also, symmetrical- as opposed to asymmetric-encryption algorithms have been included since they characterize better the operational profile
of implants, that is, a mission-critical, highly-personalized functionality.

The checksum code has been selected for its minimal overhead and effectiveness (it has been used in implantable systems time and again)
while CRC32 has already been implemented in various lightweight network protocols including the energy-scavenging ZigBee.

Lastly, we have implemented both real applications (motion and DMU) after extensively investigating the diverse field of implant applications
and consider them capable of capturing commonly met operations in contemporary and future implants. Suitable datasets representing
biological content have been used to feed all benchmarks. Particularly for the DMU benchmark, actual, field-collected datasets have been
used in order to capture the exact behavior of the simulated implantable system. By including pairs of different algorithms performing similar
functionality in ImpBench, we attempt to offer some benchmarking diversity able to capture different aspects of new implantable systems,
when evaluated through the ImpBench suite.

IMPBENCH SUITE V1.1 – RELEASE NOTES

5 / 13

BENCHMARK DETAILS
The following legend has been used for filling in the table:

 Abbreviation: The abbreviated benchmark name, as used in the ImpBench sources.

 Description: A short explanation of the benchmark functionality, origins and suitability for the ImpBench suite.

 Original source: The author(s) of the original benchmark.

 Online resource: Actual source code of the original benchmark.

 ImpBench source: The author(s) of the version used in the ImpBench suite. It applies for either major or minor modifications to
the existent benchmark source as well as for the authoring of a new benchmark from scratch.

 Modifications: Concise list of modifications to the original benchmark sources, if applicable. See benchmark sources for a more
complete list of modifications.

 Original license: The type of license protecting the original benchmark sources, if any.

 ImpBench license: The type of license protecting the derived ImpBench sources, if any.

ImpBench DETAILS

 -- COMPRESSION --

miniLZO Abbreviation mlzo

 Description MiniLZO is a light-weight subset of the LZO library (LZ77-variant). LZO is a data compression
library suitable for data de-/compression in real-time, i.e. it favors speed over compression ratio.
LZO is written in ANSI C and is designed to be portable across platforms.

 Original source Markus F.X.J. Oberhumer

 Online resource http://www.oberhumer.com/opensource/lzo/download/minilzo-2.03.tar.gz

 ImpBench
source

Christos Strydis

 Modifications See comments in top-level source file.

 Original license GNU General Public License – version 2

 ImpBench
license

The rights of the initial source(s) are as specified above, under “Original license”. This
implementation is the property of: Christos Strydis, CE Lab, TU Delft, 2007.

Finnish Abbreviation fin

 Description This is a C version of the Finnish submission to the Dr. Dobbs compression contest. It is
considered to be one of the fastest DOS compressors and is, in fact, a LZ77-variant, its
functionality based on a 2-character memory window. It is part of the “Lossless Data-
Compression Kit, LDS v1.3,” by N. de Vries.

 Original source Jussi Puttonen, Timo Raita and Jukka Teuhola (original assembly version), Nico de Vries (C
version)

 Online resource http://www.nicodevries.com/nico/lds13.zip

 ImpBench
source

Christos Strydis

 Modifications See comments in top-level source file.

 Original license Original source submitted to the Dr. Dobb’s Journal: Data Compression Contest.

 C version implemented by N. de Vries.
 ImpBench

license
The rights of the initial source(s) are as specified above, under “Original license”. This
implementation is the property of: Christos Strydis, CE Lab, TU Delft, 2007.

http://www.oberhumer.com/opensource/lzo/download/minilzo-2.03.tar.gz
http://www.nicodevries.com/nico/lds13.zip

IMPBENCH SUITE V1.1 – RELEASE NOTES

6 / 13

 -- ENCRYPTION --

MISTY1 Abbreviation misty1

 Description MISTY1 is one of the CRYPTREC-recommended 64-bit ciphers and is the predecessor of
KASUMI, the 3GPP-endorsed encryption algorithm. MISTY1 is designed for high-speed
implementations on hardware as well as software platforms by using only logical operations and
table lookups. MISTY1 is considered secure with full 8 rounds.

 Original source Hironobu Suzuki

 Online resource http://www.mirrorservice.org/sites/ftp.wiretapped.net/pub/security/cryptography/

 ImpBench
source

Christos Strydis, Di Zhu

 Modifications See comments in top-level source file.

 Original license MISTY1 architecture: Royalty-free open standard, documented in RFC2994 [1].

 Original MISTY1 implementation: Mitsubishi Electric Corporation, 2002 (c) [1].
 ImpBench

license
The rights of the initial source(s) are as specified above, under “Original license”. This
implementation is the property of: Christos Strydis and Di Zhu, CE Lab, TU Delft, 2008.

RC6 Abbreviation rc6

 Description RC6 is a parameterized cipher and has a small code size. RC6 is one of the five finalists that
competed in the AES challenge and has reasonable performance. Further, Slijepcevic et al. selected
RC6 as the algorithm of choice for WSNs. RC6-32/20/16 with 20 rounds is considered secure.

 Original source Y.W. Law – EYES project

 Online resource http://wwwes.cs.utwente.nl/eyes/crypto_test.zip

 ImpBench
source

Christos Strydis, Di Zhu

 Modifications See comments in top-level source file.

 Original license RC6 architecture: Patented

 Original RC6 implementation: Y.W. Law – EYES project
 ImpBench

license
The rights of the initial source(s) are as specified above, under “Original license”. This
implementation is the property of: Christos Strydis and Di Zhu, CE Lab, TU Delft, 2008.

http://www.mirrorservice.org/sites/ftp.wiretapped.net/pub/security/cryptography/
http://wwwes.cs.utwente.nl/eyes/crypto_test.zip

IMPBENCH SUITE V1.1 – RELEASE NOTES

7 / 13

 -- DATA INTEGRITY --

checksum Abbreviation csum

 Description The checksum is an error-detecting code that is mainly used in network protocols (e.g. IP and
TCP header checksum). The checksum is calculated by adding the bytes of the data, adding the
carry bits to the least significant bytes and then getting the two’s complement of the results. The
main advantage of the checksum code is that it can be easily implemented using an adder. The
main disadvantage is that it cannot detect some types of errors (e.g. reordering the data bytes). In
the proposed benchmark, a 16-bit checksum code has been selected which is the most common
type used for telecommunications protocols.

 Original source R. Braden, D. Borman, and C. Partridge

 Online resource N/A

 ImpBench
source

Christos Strydis, Christoforos Kachris

 Modifications See comments in top-level source file.

 Original license R. Braden, D. Borman, and C. Partridge [4]

 ImpBench
license

The initial source is the property of the original authors. This implementation is the property of:
Christos Strydis and Christoforos Kachris, CE Lab, TU Delft, 2008.

crc32 Abbreviation crc32

 Description The Cyclic-Redundancy Check (CRC) is an error-detecting code that is based on polynomial
division. The main advantage of the CRC code is its simple implementation in hardware, since the
polynomial division can be implemented using a shift register and XOR gates.

 Original source G. Memik, W. H. Mangione-Smith, and W. Hu – NetBench (implementation adapted from [5])

 Online resource NetBench Website [6]

 ImpBench
source

Christos Strydis, Christoforos Kachris

 Modifications See comments in top-level source file.

 Original license Base, optimized, checksum implementation: R. Braden, D. Borman, and C. Partridge [4].

 Subsequent implementation as part of the NetBench suite [5].
 ImpBench

license
The initial source is the property of the original authors. This implementation is the property of:
Christos Strydis and Christoforos Kachris, CE Lab, TU Delft, 2008.

IMPBENCH SUITE V1.1 – RELEASE NOTES

8 / 13

 -- REAL APPLICATIONS --

motion Abbreviation motion

 Description This is a synthetic benchmark based on the algorithm described in the work of Wouters et al. [7].
It is a motion-detection algorithm for the movement of animals. In this algorithm, the degree of
activity is actually monitored rather than the exact value of the amplitude of the activity signal.
That is, the percentage of samples above a set threshold value in a given monitoring window. In
effect, this motion-detection algorithm is a smart, efficient, data-reduction algorithm.

 Original source R. Puers and P. Wouters (concept described in [7])

 Online resource N/A (Original did not contain a software implementation)

 ImpBench
source

Christos Strydis

 Modifications The whole benchmark has been implemented as a synthetic kernel implementing the functionality
described in [7].

 Original license Implemented as an analog subsystem (HW) of an implant, described in journal publication [7].

 ImpBench
license

The motion-detection-algorithm concept and circuit implementation are the property of the paper
authors. This implementation is the property of: Christos Strydis, CE Lab, TU Delft, 2008.

DMU Abbreviation dmu

 Description This is a synthetic benchmark based on the system described in the work of Cross et al. [8]. It
simulates a drug-delivery & monitoring unit (DMU). This program does (and can) not simulate all
real-time time aspects of the actual (interrupt-driven) system, such as sensor/actuator-specific
control, low-level functionality, transceiver operation and so on. Nonetheless, the emphasis here
is on the operations performed by the implant core in response to external and internal events
(i.e. interrupts). A realistic model has been built imitating the real system as closely as possible.

 Original source P. S. Cross, R. Kunnemeyer, C. R. Bunt, D. A. Carnegie and Michael J. Rathbone (concept
described in [8])

 Online resource Original software sources can be directly requested from the author. See comments in source file.

 ImpBench
source

Christos Strydis

 Modifications The whole benchmark has been implemented as a synthetic kernel implementing the functionality
described in [8]. It has been based on the original embedded-C code running in the implant,
provided by P. Cross.

 Original license Implemented as the control SW of an implant, described in journal publication [8].

 ImpBench
license

The delivery-monitoring unit (dmu) concept and sources are the property of the paper authors.
This implementation is the property of: Christos Strydis, CE Lab, TU Delft, 2008.

A. Comments:
 For further details on the ImpBench characteristics, and related references please refer to [9].

 For more technical details on the structure of the various benchmarks as well as other hands-on aspects, please refer to the extensive
comments at the beginning of each top-level, benchmark source file.

 If all else fails, you are welcome to contact the ImpBench primary author, Christos Strydis, at: C.Strydis@erasmusmc.nl.

 All ImpBench benchmarks have been successfully built and run with GNU GCC versions 4.1.1, 3.3.4, 3.3.3, 2.96 and 2.95.3 as well
as with the ARM CROSS-GCC version 2.95.2 [10].

mailto:C.Strydis@erasmusmc.nl

IMPBENCH SUITE V1.1 – RELEASE NOTES

9 / 13

B. References
[1] H. Ohta and M. Matsui, A Description of the MISTY1 Encryption Algorithm, United States, 2000.
[2] http://global.mitsubishielectric.com/pdf/advance/vol100/03Vol100_TR2.pdf [unavailable], Copyright (c) 2002 Mitsubishi

Electric Corporation.
[3] G. Memik, W. H. Mangione-Smith, and W. Hu, “NetBench: a benchmarking suite for network processors,” in IEEE/ACM

international conference on Computer-aided design (ICCAD’01), Piscataway, NJ, USA, 2001, pp. 39–42.
[4] R. Braden, D. Borman, and C. Partridge, “Computing the internet checksum”, SIGCOMM Comput. Commun. Rev., vol. 19,

no. 2, pp. 86–94, 1989.
[5] “Cell Relay Retreat: CRC-32 Calculation, Test Cases and HEC Tutorial”, http://cell.onecall.net/cell-

relay/publications/software/ [unavailable].
[6] NetBench Web Site: http://istanbul.icsl.ucla.edu/NetBench [unavailable]
[7] R. Puers and P. Wouters, Adaptable interface Circuits for Flexible Monitoring of Temperature and Movement, AICSP, Vol.

14, pp. 193--206, 1997.
[8] P. Cross, R. Kunnemeyer, C. Bunt, D. Carnegie, and M. Rathbone, Control, communication and monitoring of intravaginal

drug delivery in dairy cows, in International Journal of Pharmaceuticals, vol. 282, 10 September 2004, pp. 35--44.
[9] C. Strydis, C. Kachris, G. N. Gaydadjiev, ImpBench: A novel benchmark suite for biomedical, microelectronic implants, Int.

Conf. on Embedded Computer Systems: Architectures, Modeling, and Simulation (IC-SAMOS VIII), pp. 86-95, Samos,
Greece, July 2008.

[10] SimpleScalar Version 4.0 Test Releases: http://www.simplescalar.com/v4test.html.
[11] C. Strydis and G. Gaydadjiev, Profiling of lossless data-compression algorithms for a novel biomedical-implant architecture,

The 6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system synthesis, pp. 109-114,
Atlanta, Georgia, USA, October 2008.

[12] C. Strydis, D. Zhu, and G. Gaydadjiev, Profiling of symmetric encryption algorithms for a novel biomedical-implant
architecture, Proceedings of the ACM International Conference on Computing Frontiers (CF 08), pp. 231-240, Ischia, Italy,
May 2008.

C. Other resources:
 Compression – http://www.synchrondata.com/pheaven/www/area4.htm

 Compression etc. – http://cd.textfiles.com/blackphilesii/PHILES/COMPUTER/FILES.BBS

http://global.mitsubishielectric.com/pdf/advance/vol100/03Vol100_TR2.pdf
http://cell.onecall.net/cell-relay/publications/software/
http://cell.onecall.net/cell-relay/publications/software/
http://istanbul.icsl.ucla.edu/NetBench
http://www.simplescalar.com/v4test.html
http://www.synchrondata.com/pheaven/www/area4.htm
http://cd.textfiles.com/blackphilesii/PHILES/COMPUTER/FILES.BBS

IMPBENCH SUITE V1.1 – RELEASE NOTES

10 / 13

INPUT DATASETS

A limited but representative number of input datasets is required for most of the ImpBench programs to consume. Existing literature in the
field does not offer any solid pointers or even hints towards a “standard”, representative dataset. Of course, a lot of biological-signal databases
exist and are even available online. However, since there are no solid hints for favoring one dataset source over another, the datasets selected
with the ImpBench suite have been extracted from the "Biopac Student Lab 3.7" (BSL) software for reasons of availability and simplicity.
They have the following technical specifications:

From the previous table, we can see that typical signals of muscle activity (EMG), heart activity (ECG) and brain neural activity (EEG) as
well as breath oxygen volume (RC), lung volume (PF), skin surface temperature (AEP) and blood pressure (BP) have been collected.

All considered datasets are representing one-dimensional physiological-signal measurements of varied sampling rates, depending on the
particular application. As can be also seen from the table, two dataset sizes have been used: roughly 1-KB and 10-KB data. These readouts
are actually double-precision, floating-point numbers and have been stored in both ASCII- and binary-encoded files:

 8-bit ASCII representation: Each readout is a text string terminated (on each line) with CR (carriage-return) and LF (line-feed)
characters. Each string consists of as many Bytes as the number of digits plus two extra Bytes for the decimal point and the sign
characters; thus, about 8 to 10 Bytes are used per entry, in the general case.

 Binary representation: Each readout is a packed, double-precision, floating-point number (IEEE-754) of 64 bits; thus precisely 8
Bytes are used per entry.

Except for the dmu benchmark which uses its own datasets, all other benchmarks can process either ASCII- or binary-formatted data with
no problem. The only current exception lies with the motion benchmark which (when compiled with the arm cross-gcc-2.95.2) does not
generate correct results when reading binary data.

Most of the input datasets come with a sufficiently extensive description of the experimental setup and the acquisition parameters, as shown
in the table below (two entries for each dataset type, one for each dataset size):

dataset type
BSL

test name

dataset
name

BIN size
(B)

ASCII size
(B)

samples
(#)

duration
(sec)

sample rate
(sml/sec)

sample rate
(KB/sec)

Electromyogram II (EMG) John-L02 EMGII_01 1152 1778 144 0,288 500 3,89

Electromyogram II (EMG) John-L02 EMGII_10 9608 14095 1201 2,402 500 3,91

Electroencephalogram I (EEG) John-L03 EEGI_01 984 1332 123 0,615 200 1,56
Electroencephalogram I (EEG) John-L03 EEGI_10 9616 13005 1202 6,010 200 1,56

Electrocardiogram I (ECG) John-L05 ECGI_01 912 1406 114 0,114 1000 7,81
Electrocardiogram I (ECG) John-L05 ECGI_10 9616 14824 1202 1,202 1000 7,81

Respiratory Cycle I (RC) John-L08 RCI_01 1192 1770 149 1,490 100 0,78
Respiratory Cycle I (RC) John-L08 RCI_10 9520 14581 1191 11,910 100 0,78

Pulmonary Function I (PF) John-L12 PFI_01 1184 1617 148 1,480 100 0,78
Pulmonary Function I (PF) John-L12 PFI_10 9240 12863 1155 11,550 100 0,78

Skin Temperature (AEP) John-L15 AEP_01 1120 1397 140 0,700 200 1,56
Skin Temperature (AEP) John-L15 AEP_10 9736 11739 1217 6,085 200 1,56

Blood Pressure (BP) John-L16 BP_01 1128 1404 141 0,282 500 3,91
Blood Pressure (BP) John-L16 BP_10 9584 12798 1198 2,396 500 3,89

IMPBENCH SUITE V1.1 – RELEASE NOTES

11 / 13

dataset type description

Electromyogram II (EMG)
First procedure, Forearm 1 (dominant): Increased clenches in increments of 5 Kg until maximum clench
force is obtained.

Electromyogram II (EMG)
Second procedure, Forearm 1 (dominant): Continued maximal clench until fatigue causes 50%
reduction in measured force.

Electroencephalogram I (EEG)
This recording shows the Subject in a relaxed state, with eyes closed for about 10 seconds. The eyes
were then opened for approx. 12 seconds, closed approx. 12 seconds, then opened for the remainder of
the recording time.

Electroencephalogram I (EEG) N/A

Electrocardiogram I (ECG)
First procedure: Relaxed, lying down. Second procedure: Relaxed, sitting up. Third procedure: Relaxed,
sitting up state, taking prolonged breaths. Markers at the start of inhales and exhales. Fourth procedure:
Relaxed, sitting up state, recovering from exercise.

Electrocardiogram I (ECG) N/A

Respiratory Cycle I (RC)
First procedure: Seated in a chair and breathing normally. Second procedure: hyperventilation for 30
seconds, then recovery. Third procedure: hypoventilation, then recovery. Fourth procedure: coughing,
then reading aloud.

Respiratory Cycle I (RC) N/A

Pulmonary Function I (PF)
This recording shows normal breathing for 3 breaths, full inhale, return to normal breathing, full exhale,
then a return to normal breathing. Note that a Residual Volume of 1.0 Liters was used.

Pulmonary Function I (PF) N/A

Skin Temperature (AEP) Aerobic Exercise Physiology

Skin Temperature (AEP) N/A

Blood Pressure (BP)

First procedure: Subject has cuff on LEFT arm, and is sitting up at rest. Second procedure: Repeat of
the first procedure. Third procedure: Subject has pressure cuff on RIGHT arm, and is sitting up at rest.
Fourth procedure: Repeat of the third procedure. Fifth procedure: Subject is lying down at rest, with
pressure cuff on RIGHT arm. Sixth procedure: Repeat of the fifth procedure. Seventh procedure: After
mild exercise, Subject should sit up to recover with the pressure cuff on the RIGHT arm.

Blood Pressure (BP) N/A

In the following figures, the various datasets for 1-KB data are plotted (amplitude vs. time) along with their first-order derivatives, to give a
feeling of the morphology of the various datasets as well as to illustrate the rate of change of their values:

IMPBENCH SUITE V1.1 – RELEASE NOTES

12 / 13

0 20 40 60 80 100 120 140
90.04

90.06

90.08

90.1

90.12

A
m

p
li
tu

d
e

Time (sec)

AEP_01.bin

0 20 40 60 80 100 120 140
-0.01

-0.005

0

0.005

0.01

1
s
t

d
e
ri
v
a
ti
v
e

0 50 100 150
0

20

40

60

80

100

120

140

160

180

A
m

p
li
tu

d
e

Time (sec)

BP_01.bin

0 50 100 150
-10

-5

0

5

10

15

20

25

30

35

1
s
t

d
e
ri
v
a
ti
v
e

0 50 100 150
-1.5

-1

-0.5

0

A
m

p
li
tu

d
e

Time (sec)

RCI_01.bin

0 50 100 150
0

0.01

0.02

0.03

1
s
t

d
e
ri
v
a
ti
v
e

0 20 40 60 80 100 120
-0.1

-0.05

0

0.05

0.1

0.15

A
m

p
li
tu

d
e

Time (sec)

ECGI_01.bin

0 20 40 60 80 100 120
-6

-4

-2

0

2

4
x 10

-3

1
s
t

d
e
ri
v
a
ti
v
e

0 20 40 60 80 100 120 140
-20

-10

0

A
m

p
li
tu

d
e

Time (sec)

EEGI_01.bin

0 20 40 60 80 100 120 140
-5

0

5

1
s
t

d
e
ri
v
a
ti
v
e

0 50 100 150
-0.4

-0.2

0

0.2

0.4

A
m

p
li
tu

d
e

Time (sec)

EMGII_01.bin

0 50 100 150
-0.4

-0.2

0

0.2

0.4

1
s
t

d
e
ri
v
a
ti
v
e

IMPBENCH SUITE V1.1 – RELEASE NOTES

13 / 13

From the figures above, it becomes apparent that all datasets are distinctly different in terms of morphology; i.e. amplitude, duration and rate
of change, as well as sampling rate. This has been our original intention in defining a diverse yet contained set of input vectors and,
subsequently, application scenarios.

0 50 100 150
-1

0

1

2

A
m

p
li
tu

d
e

Time (sec)

PFI_01.bin

0 50 100 150
-0.05

0

0.05

0.1

1
s
t

d
e
ri
v
a
ti
v
e

